def forward()

in easycv/models/detection3d/detectors/bevformer/attentions/temporal_self_attention.py [0:0]


    def forward(self,
                query,
                key=None,
                value=None,
                identity=None,
                query_pos=None,
                key_padding_mask=None,
                reference_points=None,
                spatial_shapes=None,
                level_start_index=None,
                flag='decoder'):
        """Forward Function of MultiScaleDeformAttention.

        Args:
            query (Tensor): Query of Transformer with shape
                (num_query, bs, embed_dims).
            key (Tensor): The key tensor with shape
                `(num_key, bs, embed_dims)`.
            value (Tensor): The value tensor with shape
                `(num_key, bs, embed_dims)`.
            identity (Tensor): The tensor used for addition, with the
                same shape as `query`. Default None. If None,
                `query` will be used.
            query_pos (Tensor): The positional encoding for `query`.
                Default: None.
            key_pos (Tensor): The positional encoding for `key`. Default
                None.
            reference_points (Tensor):  The normalized reference
                points with shape (bs, num_query, num_levels, 2),
                all elements is range in [0, 1], top-left (0,0),
                bottom-right (1, 1), including padding area.
                or (N, Length_{query}, num_levels, 4), add
                additional two dimensions is (w, h) to
                form reference boxes.
            key_padding_mask (Tensor): ByteTensor for `query`, with
                shape [bs, num_key].
            spatial_shapes (Tensor): Spatial shape of features in
                different levels. With shape (num_levels, 2),
                last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape ``(num_levels, )`` and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].

        Returns:
             Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """

        if value is None:
            assert self.batch_first
            bs, len_bev, c = query.shape
            value = torch.stack([query, query], 1).reshape(bs * 2, len_bev, c)

            # value = torch.cat([query, query], 0)

        if identity is None:
            identity = query
        if query_pos is not None:
            query = query + query_pos
        if not self.batch_first:
            # change to (bs, num_query ,embed_dims)
            query = query.permute(1, 0, 2)
            value = value.permute(1, 0, 2)
        bs, num_query, embed_dims = query.shape
        _, num_value, _ = value.shape
        assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
        assert self.num_bev_queue == 2

        query = torch.cat([value[:bs], query], -1)
        value = self.value_proj(value)

        if key_padding_mask is not None:
            value = value.masked_fill(key_padding_mask[..., None], 0.0)

        value = value.reshape(bs * self.num_bev_queue, num_value,
                              self.num_heads, -1)

        sampling_offsets = self.sampling_offsets(query)
        sampling_offsets = sampling_offsets.view(bs, num_query, self.num_heads,
                                                 self.num_bev_queue,
                                                 self.num_levels,
                                                 self.num_points, 2)
        attention_weights = self.attention_weights(query).view(
            bs, num_query, self.num_heads, self.num_bev_queue,
            self.num_levels * self.num_points)
        attention_weights = attention_weights.softmax(-1)

        attention_weights = attention_weights.view(bs, num_query,
                                                   self.num_heads,
                                                   self.num_bev_queue,
                                                   self.num_levels,
                                                   self.num_points)

        attention_weights = attention_weights.permute(0, 3, 1, 2, 4, 5)\
            .reshape(bs * self.num_bev_queue, num_query, self.num_heads, self.num_levels, self.num_points).contiguous()
        sampling_offsets = sampling_offsets.permute(0, 3, 1, 2, 4, 5, 6)\
            .reshape(bs * self.num_bev_queue, num_query, self.num_heads, self.num_levels, self.num_points, 2)

        if reference_points.shape[-1] == 2:
            offset_normalizer = torch.stack(
                [spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
            sampling_locations = reference_points[:, :, None, :, None, :] \
                + sampling_offsets \
                / offset_normalizer[None, None, None, :, None, :]

        elif reference_points.shape[-1] == 4:
            sampling_locations = reference_points[:, :, None, :, None, :2] \
                + sampling_offsets / self.num_points \
                * reference_points[:, :, None, :, None, 2:] \
                * 0.5
        else:
            raise ValueError(
                f'Last dim of reference_points must be'
                f' 2 or 4, but get {reference_points.shape[-1]} instead.')
        if torch.cuda.is_available() and value.is_cuda:
            from easycv.thirdparty.deformable_attention.functions import MSDeformAttnFunction
            if not torch.jit.is_scripting() and not torch.jit.is_tracing():
                op = MSDeformAttnFunction.apply
            else:
                op = torch.ops.custom.ms_deform_attn
            if value.dtype == torch.float16:
                output = op(
                    value.to(torch.float32), spatial_shapes, level_start_index,
                    sampling_locations.to(torch.float32), attention_weights,
                    self.im2col_step)
                output = output.to(torch.float16)
            else:
                output = op(value, spatial_shapes, level_start_index,
                            sampling_locations, attention_weights,
                            self.im2col_step)
        else:
            output = multi_scale_deformable_attn_pytorch(
                value, spatial_shapes, sampling_locations, attention_weights)

        # output shape (bs*num_bev_queue, num_query, embed_dims)
        # (bs*num_bev_queue, num_query, embed_dims)-> (num_query, embed_dims, bs*num_bev_queue)
        output = output.permute(1, 2, 0)

        # fuse history value and current value
        # (num_query, embed_dims, bs*num_bev_queue)-> (num_query, embed_dims, bs, num_bev_queue)
        output = output.view(num_query, embed_dims, bs, self.num_bev_queue)
        output = output.mean(-1)

        # (num_query, embed_dims, bs)-> (bs, num_query, embed_dims)
        output = output.permute(2, 0, 1)

        output = self.output_proj(output)

        if not self.batch_first:
            output = output.permute(1, 0, 2)

        return self.dropout(output) + identity