in easycv/core/optimizer/ranger.py [0:0]
def step(self, closure=None):
loss = None
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
# Uncomment if you need to use the actual closure...
# if closure is not None:
# loss = closure()
# Evaluate averages and grad, update param tensors
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
'Ranger optimizer does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p] # get state dict for this param
if len(
state
) == 0: # if first time to run...init dictionary with our desired entries
# if self.first_run_check==0:
# self.first_run_check=1
# print("Initializing slow buffer...should not see this at load from saved model!")
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
# look ahead weight storage now in state dict
state['slow_buffer'] = torch.empty_like(p.data)
state['slow_buffer'].copy_(p.data)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
p_data_fp32)
# begin computations
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
# GC operation for Conv layers and FC layers
# if grad.dim() > self.gc_gradient_threshold:
# grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True))
if self.gc_loc:
grad = centralized_gradient(
grad,
use_gc=self.use_gc,
gc_conv_only=self.gc_conv_only)
state['step'] += 1
# compute variance mov avg
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# compute mean moving avg
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
buffered = self.radam_buffer[int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2**state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * \
state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
if N_sma > self.N_sma_threshhold:
step_size = math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) *
(N_sma - 2) / N_sma * N_sma_max /
(N_sma_max - 2)) / (1 - beta1**state['step'])
else:
step_size = 1.0 / (1 - beta1**state['step'])
buffered[2] = step_size
# if group['weight_decay'] != 0:
# p_data_fp32.add_(-group['weight_decay']
# * group['lr'], p_data_fp32)
# apply lr
if N_sma > self.N_sma_threshhold:
denom = exp_avg_sq.sqrt().add_(group['eps'])
G_grad = exp_avg / denom
else:
G_grad = exp_avg
if group['weight_decay'] != 0:
G_grad.add_(p_data_fp32, alpha=group['weight_decay'])
# GC operation
if not self.gc_loc:
G_grad = centralized_gradient(
G_grad,
use_gc=self.use_gc,
gc_conv_only=self.gc_conv_only)
p_data_fp32.add_(G_grad, alpha=-step_size * group['lr'])
p.data.copy_(p_data_fp32)
# integrated look ahead...
# we do it at the param level instead of group level
if state['step'] % group['k'] == 0:
# get access to slow param tensor
slow_p = state['slow_buffer']
# (fast weights - slow weights) * alpha
slow_p.add_(p.data - slow_p, alpha=self.alpha)
# copy interpolated weights to RAdam param tensor
p.data.copy_(slow_p)
return loss