def predict()

in easycv/predictors/feature_extractor.py [0:0]


    def predict(self, input_data_list, batch_size=-1):
        """
    using session run predict a number of samples using batch_size

    Args:
      input_data_list:  a list of numpy array, each array is a sample to be predicted
      batch_size: batch_size passed by the caller, you can also ignore this param and
        use a fixed number if you do not want to adjust batch_size in runtime
    Return:
      result: a list of dict, each dict is the prediction result of one sample
        eg, {"output1": value1, "output2": value2}, the value type can be
        python int str float, and numpy array
    """
        num_image = len(input_data_list)
        assert len(
            input_data_list) > 0, 'input images should not be an empty list'
        if batch_size > 0:
            num_batches = int(math.ceil(float(num_image) / batch_size))
            image_list = input_data_list
        else:
            num_batches = 1
            batch_size = len(input_data_list)
            image_list = input_data_list

        outputs_list = []
        for batch_idx in range(num_batches):
            batch_image_list = image_list[
                batch_idx *
                batch_size:min(len(image_list), (batch_idx + 1) * batch_size)]

            face_image_list = []
            face_bbox_list = []
            faceidx_by_imageidx = {}

            for idx, img in enumerate(batch_image_list):
                # this try except only happens to no face detected
                bbox, ld = self.detector.safe_detect(img)

                if len(bbox) == 0:
                    print('batch %d , %dth image has no face detected' %
                          (batch_idx, idx))
                elif len(bbox) >= 1:
                    if len(bbox) > 1:
                        print('batch %d , %dth image has more then %d face' %
                              (batch_idx, idx, len(bbox)))

                    _bbox = []
                    _ld = []
                    for idx, b in enumerate(bbox):
                        if b[-1] > self.face_threshold:
                            _bbox.append(b)
                            _ld.append(ld[idx])

                    bbox = _bbox
                    ld = _ld

                    # this is for muti face detectd in one img
                    faceidx_by_imageidx[idx] = []
                    for bbox_idx, face_box in enumerate(bbox):
                        face_image_list.append(
                            glint360k_align(img, ld[bbox_idx]))
                        face_bbox_list.append(face_box)
                        face_idx = len(face_image_list) - 1
                        faceidx_by_imageidx[idx].append(face_idx)
                # else:
                #     batch_image_list[idx] = np.array(glint360k_align(img, ld[0]))

            if len(face_image_list) > 0:
                image_tensor_list = self.predictor.preprocess(face_image_list)
                input_data = self.batch(image_tensor_list)

                outputs = self.predictor.predict_batch(
                    input_data, mode='extract')

                neck_output_dict = {}
                for neck_idx, attr_method in enumerate(self.attr_method):
                    neck_output = outputs['neck_%d_0' % neck_idx]
                    neck_output = torch.nn.Softmax(dim=1)(neck_output)
                    if attr_method == 'softmax':
                        neck_output = torch.argmax(neck_output, dim=1)
                    elif attr_method == 'distribute_sum':
                        n, c = neck_output.size()
                        distribute = torch.arange(0, c).repeat(n, 1).to(
                            neck_output.device)
                        neck_output = (distribute * neck_output).sum(dim=1)
                    else:
                        raise ValueError(
                            'TorchFaceAttrExtractor for neck %d only support attr_method softmax/distributed sum'
                            % (neck_idx))
                        neck_output = torch.argmax(neck_output, dim=1)
                    neck_output_dict[neck_idx] = neck_output.cpu().numpy()

                for imgidx in faceidx_by_imageidx.keys():
                    single_result = {}
                    for k in neck_output_dict.keys():
                        single_result['face_' + self.attr_name[k]] = []
                    single_result['face_bbox'] = []
                    for fn, faceidx in enumerate(faceidx_by_imageidx[imgidx]):
                        for k in neck_output_dict.keys():
                            out = np.squeeze(neck_output_dict[k][faceidx])
                            if self.attr_method[k] == 'softmax':
                                label_map = getattr(
                                    self, '%s_map' % self.attr_name[k])
                                out = label_map[out]
                            single_result['face_' +
                                          self.attr_name[k]].append(out)
                        single_result['face_bbox'].append(
                            face_bbox_list[faceidx])
                    outputs_list.append(single_result)
        return outputs_list