def multi_head_attention_forward()

in easycv/models/detection/detectors/dab_detr/attention.py [0:0]


def multi_head_attention_forward(
        query: Tensor,
        key: Tensor,
        value: Tensor,
        embed_dim_to_check: int,
        num_heads: int,
        in_proj_weight: Tensor,
        in_proj_bias: Tensor,
        bias_k: Optional[Tensor],
        bias_v: Optional[Tensor],
        add_zero_attn: bool,
        dropout_p: float,
        out_proj_weight: Tensor,
        out_proj_bias: Tensor,
        training: bool = True,
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = True,
        attn_mask: Optional[Tensor] = None,
        use_separate_proj_weight: bool = False,
        q_proj_weight: Optional[Tensor] = None,
        k_proj_weight: Optional[Tensor] = None,
        v_proj_weight: Optional[Tensor] = None,
        static_k: Optional[Tensor] = None,
        static_v: Optional[Tensor] = None,
        out_dim: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
    r"""
    Args:
        query, key, value: map a query and a set of key-value pairs to an output.
            See "Attention Is All You Need" for more details.
        embed_dim_to_check: total dimension of the model.
        num_heads: parallel attention heads.
        in_proj_weight, in_proj_bias: input projection weight and bias.
        bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
        add_zero_attn: add a new batch of zeros to the key and
                       value sequences at dim=1.
        dropout_p: probability of an element to be zeroed.
        out_proj_weight, out_proj_bias: the output projection weight and bias.
        training: apply dropout if is ``True``.
        key_padding_mask: if provided, specified padding elements in the key will
            be ignored by the attention. This is an binary mask. When the value is True,
            the corresponding value on the attention layer will be filled with -inf.
        need_weights: output attn_output_weights.
        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
            the batches while a 3D mask allows to specify a different mask for the entries of each batch.
        use_separate_proj_weight: the function accept the proj. weights for query, key,
            and value in different forms. If false, in_proj_weight will be used, which is
            a combination of q_proj_weight, k_proj_weight, v_proj_weight.
        q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
        static_k, static_v: static key and value used for attention operators.
    Shape:
        Inputs:
        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
          the embedding dimension.
        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
          If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
          will be unchanged. If a BoolTensor is provided, the positions with the
          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
          S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
          positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
          are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
          is provided, it will be added to the attention weight.
        - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
        - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
        Outputs:
        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
          E is the embedding dimension.
        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
          L is the target sequence length, S is the source sequence length.
    """
    if not torch.jit.is_scripting():
        tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k,
                    bias_v, out_proj_weight, out_proj_bias)
        if any([type(t) is not Tensor
                for t in tens_ops]) and has_torch_function(tens_ops):
            return handle_torch_function(
                multi_head_attention_forward,
                tens_ops,
                query,
                key,
                value,
                embed_dim_to_check,
                num_heads,
                in_proj_weight,
                in_proj_bias,
                bias_k,
                bias_v,
                add_zero_attn,
                dropout_p,
                out_proj_weight,
                out_proj_bias,
                training=training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                use_separate_proj_weight=use_separate_proj_weight,
                q_proj_weight=q_proj_weight,
                k_proj_weight=k_proj_weight,
                v_proj_weight=v_proj_weight,
                static_k=static_k,
                static_v=static_v)
    tgt_len, bsz, embed_dim = query.size()
    assert embed_dim == embed_dim_to_check
    # allow MHA to have different sizes for the feature dimension
    assert key.size(0) == value.size(0) and key.size(1) == value.size(1)

    head_dim = embed_dim // num_heads
    v_head_dim = out_dim // num_heads
    assert head_dim * num_heads == embed_dim, 'embed_dim must be divisible by num_heads'
    scaling = float(head_dim)**-0.5

    q = query * scaling
    k = key
    v = value

    if attn_mask is not None:
        assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
            attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
            'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
        if attn_mask.dtype == torch.uint8:
            warnings.warn(
                'Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.'
            )
            attn_mask = attn_mask.to(torch.bool)

        if attn_mask.dim() == 2:
            attn_mask = attn_mask.unsqueeze(0)
            if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
                raise RuntimeError(
                    'The size of the 2D attn_mask is not correct.')
        elif attn_mask.dim() == 3:
            if list(attn_mask.size()) != [
                    bsz * num_heads,
                    query.size(0), key.size(0)
            ]:
                raise RuntimeError(
                    'The size of the 3D attn_mask is not correct.')
        else:
            raise RuntimeError(
                "attn_mask's dimension {} is not supported".format(
                    attn_mask.dim()))
        # attn_mask's dim is 3 now.

    # convert ByteTensor key_padding_mask to bool
    if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
        warnings.warn(
            'Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.'
        )
        key_padding_mask = key_padding_mask.to(torch.bool)

    if bias_k is not None and bias_v is not None:
        if static_k is None and static_v is None:
            k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))
        else:
            assert static_k is None, 'bias cannot be added to static key.'
            assert static_v is None, 'bias cannot be added to static value.'
    else:
        assert bias_k is None
        assert bias_v is None

    q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    if k is not None:
        k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
    if v is not None:
        v = v.contiguous().view(-1, bsz * num_heads,
                                v_head_dim).transpose(0, 1)

    if static_k is not None:
        assert static_k.size(0) == bsz * num_heads
        assert static_k.size(2) == head_dim
        k = static_k

    if static_v is not None:
        assert static_v.size(0) == bsz * num_heads
        assert static_v.size(2) == v_head_dim
        v = static_v

    src_len = k.size(1)

    if key_padding_mask is not None:
        assert key_padding_mask.size(0) == bsz
        assert key_padding_mask.size(1) == src_len

    if add_zero_attn:
        src_len += 1
        k = torch.cat([
            k,
            torch.zeros(
                (k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)
        ],
                      dim=1)
        v = torch.cat([
            v,
            torch.zeros(
                (v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)
        ],
                      dim=1)
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))

    attn_output_weights = torch.bmm(q, k.transpose(1, 2))
    assert list(
        attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_output_weights.masked_fill_(attn_mask, float('-inf'))
        else:
            attn_output_weights += attn_mask

    if key_padding_mask is not None:
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len,
                                                       src_len)
        attn_output_weights = attn_output_weights.masked_fill(
            key_padding_mask.unsqueeze(1).unsqueeze(2),
            float('-inf'),
        )
        attn_output_weights = attn_output_weights.view(bsz * num_heads,
                                                       tgt_len, src_len)

    # attn_output_weights = softmax(
    #     attn_output_weights, dim=-1)
    attn_output_weights = softmax(
        attn_output_weights - attn_output_weights.max(dim=-1, keepdim=True)[0],
        dim=-1)
    attn_output_weights = dropout(
        attn_output_weights, p=dropout_p, training=training)

    attn_output = torch.bmm(attn_output_weights, v)
    assert list(attn_output.size()) == [bsz * num_heads, tgt_len, v_head_dim]
    attn_output = attn_output.transpose(0, 1).contiguous().view(
        tgt_len, bsz, out_dim)
    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)

    if need_weights:
        # average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len,
                                                       src_len)
        return attn_output, attn_output_weights.sum(dim=1) / num_heads
    else:
        return attn_output, None