in easycv/datasets/classification/pipelines/transform.py [0:0]
def __init__(self,
erase_prob=0.5,
min_area_ratio=0.02,
max_area_ratio=0.4,
aspect_range=(3 / 10, 10 / 3),
mode='const',
fill_color=(128, 128, 128),
fill_std=None):
assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1.
assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1.
assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1.
assert min_area_ratio <= max_area_ratio, \
'min_area_ratio should be smaller than max_area_ratio'
if isinstance(aspect_range, float):
aspect_range = min(aspect_range, 1 / aspect_range)
aspect_range = (aspect_range, 1 / aspect_range)
assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \
and all(isinstance(x, float) for x in aspect_range), \
'aspect_range should be a float or Sequence with two float.'
assert all(x > 0 for x in aspect_range), \
'aspect_range should be positive.'
assert aspect_range[0] <= aspect_range[1], \
'In aspect_range (min, max), min should be smaller than max.'
assert mode in ['const', 'rand']
if isinstance(fill_color, Number):
fill_color = [fill_color] * 3
assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \
and all(isinstance(x, Number) for x in fill_color), \
'fill_color should be a float or Sequence with three int.'
if fill_std is not None:
if isinstance(fill_std, Number):
fill_std = [fill_std] * 3
assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \
and all(isinstance(x, Number) for x in fill_std), \
'fill_std should be a float or Sequence with three int.'
self.erase_prob = erase_prob
self.min_area_ratio = min_area_ratio
self.max_area_ratio = max_area_ratio
self.aspect_range = aspect_range
self.mode = mode
self.fill_color = fill_color
self.fill_std = fill_std