def __init__()

in easycv/datasets/classification/pipelines/transform.py [0:0]


    def __init__(self,
                 erase_prob=0.5,
                 min_area_ratio=0.02,
                 max_area_ratio=0.4,
                 aspect_range=(3 / 10, 10 / 3),
                 mode='const',
                 fill_color=(128, 128, 128),
                 fill_std=None):
        assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1.
        assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1.
        assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1.
        assert min_area_ratio <= max_area_ratio, \
            'min_area_ratio should be smaller than max_area_ratio'
        if isinstance(aspect_range, float):
            aspect_range = min(aspect_range, 1 / aspect_range)
            aspect_range = (aspect_range, 1 / aspect_range)
        assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \
            and all(isinstance(x, float) for x in aspect_range), \
            'aspect_range should be a float or Sequence with two float.'
        assert all(x > 0 for x in aspect_range), \
            'aspect_range should be positive.'
        assert aspect_range[0] <= aspect_range[1], \
            'In aspect_range (min, max), min should be smaller than max.'
        assert mode in ['const', 'rand']
        if isinstance(fill_color, Number):
            fill_color = [fill_color] * 3
        assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \
            and all(isinstance(x, Number) for x in fill_color), \
            'fill_color should be a float or Sequence with three int.'
        if fill_std is not None:
            if isinstance(fill_std, Number):
                fill_std = [fill_std] * 3
            assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \
                and all(isinstance(x, Number) for x in fill_std), \
                'fill_std should be a float or Sequence with three int.'

        self.erase_prob = erase_prob
        self.min_area_ratio = min_area_ratio
        self.max_area_ratio = max_area_ratio
        self.aspect_range = aspect_range
        self.mode = mode
        self.fill_color = fill_color
        self.fill_std = fill_std