benchmarks/selfsup/classification/imagenet/moby_r50_8xb2048_20e_feature.py (51 lines of code) (raw):
_base_ = 'configs/base.py'
# oss config only works when using oss
# sync local models and logs to oss
oss_sync_config = dict(other_file_list=['**/events.out.tfevents*', '**/*log*'])
oss_io_config = dict(
ak_id='your oss ak id',
ak_secret='your oss ak secret',
hosts='your oss hosts',
buckets=['your oss buckets'])
log_config = dict(
interval=1,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
# model settings
model = dict(
type='Classification',
pretrained=None,
with_sobel=False,
backbone=dict(type='BenchMarkMLP', feature_num=2048),
head=dict(
type='ClsHead', with_avg_pool=True, in_channels=2048,
num_classes=1000))
# dataset settings
data_source_cfg = dict(type='SSLSourceImageNetFeature')
root_path = 'linear_eval/imagenet_features/'
dataset_type = 'ClsDataset'
train_pipeline = [
# dict(type='ToTensor'),
]
test_pipeline = [
# dict(type='ToTensor'),
]
data = dict(
imgs_per_gpu=2048, # total 2048*8, 8GPU linear cls
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_source=dict(
root_path=root_path, training=True, **data_source_cfg),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
root_path=root_path, training=False, **data_source_cfg),
pipeline=test_pipeline))
custom_hooks = []
eval_config = dict(interval=5, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))])
]
# optimizer
optimizer = dict(type='AdamW', lr=0.001, weight_decay=4e-5)
# learning policy
lr_config = dict(policy='CosineAnnealing', min_lr=0.0, by_epoch=False)
checkpoint_config = dict(interval=5)
# runtime settings
total_epochs = 20