benchmarks/selfsup/classification/imagenet/mocov2_r50_8xb2048_40e_feature.py (46 lines of code) (raw):

_base_ = 'configs/base.py' # oss config only works when using oss # sync local models and logs to oss oss_sync_config = dict(other_file_list=['**/events.out.tfevents*', '**/*log*']) oss_io_config = dict( ak_id='your oss ak id', ak_secret='your oss ak secret', hosts='your oss hosts', buckets=['your oss buckets']) # model settings model = dict( type='Classification', pretrained=None, with_sobel=False, backbone=dict(type='BenchMarkMLP', feature_num=2048), head=dict( type='ClsHead', with_avg_pool=True, in_channels=2048, num_classes=1000)) # dataset settings data_source_cfg = dict(type='SSLSourceImageNetFeature') root_path = 'linear_eval/imagenet_features/' dataset_type = 'ClsDataset' train_pipeline = [ # dict(type='ToTensor'), ] test_pipeline = [ # dict(type='ToTensor'), ] data = dict( imgs_per_gpu=2048, # total 2048*8=256, 8GPU linear cls workers_per_gpu=2, train=dict( type=dataset_type, data_source=dict( root_path=root_path, training=True, **data_source_cfg), pipeline=train_pipeline), val=dict( type=dataset_type, data_source=dict( root_path=root_path, training=False, **data_source_cfg), pipeline=test_pipeline)) # additional hooks eval_config = dict(interval=5, gpu_collect=True) eval_pipelines = [ dict( mode='test', data=data['val'], evaluators=[dict(type='ClsEvaluator', topk=(1, 5))]) ] # optimizer 8ka optimizer = dict(type='SGD', lr=10.0, momentum=0.9, weight_decay=0.) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0.) total_epochs = 40 checkpoint_config = dict(interval=5)