configs/classification/imagenet/resnet/resnet50_b32x8_100e_jpg.py (22 lines of code) (raw):

_base_ = '../common/dataset/imagenet_classification.py' num_classes = 1000 # model settings model = dict( type='Classification', backbone=dict( type='ResNet', depth=50, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')), head=dict( type='ClsHead', with_avg_pool=True, in_channels=2048, loss_config=dict( type='CrossEntropyLossWithLabelSmooth', label_smooth=0, ), num_classes=num_classes)) # optimizer optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) # learning policy lr_config = dict(policy='step', step=[30, 60, 90]) checkpoint_config = dict(interval=10) # runtime settings total_epochs = 100