configs/classification/imagenet/resnet/resnet50_b32x8_100e_jpg.py (22 lines of code) (raw):
_base_ = '../common/dataset/imagenet_classification.py'
num_classes = 1000
# model settings
model = dict(
type='Classification',
backbone=dict(
type='ResNet',
depth=50,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN')),
head=dict(
type='ClsHead',
with_avg_pool=True,
in_channels=2048,
loss_config=dict(
type='CrossEntropyLossWithLabelSmooth',
label_smooth=0,
),
num_classes=num_classes))
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 100