configs/config_templates/topdown_hrnet_w48_udp.py (191 lines of code) (raw):
oss_io_config = dict(
ak_id='your oss ak id',
ak_secret='your oss ak secret',
hosts='oss-cn-zhangjiakou.aliyuncs.com',
buckets=['your_bucket'])
oss_sync_config = dict(other_file_list=['**/events.out.tfevents*', '**/*log*'])
# user params
imgs_per_gpu = 32
image_size = [192, 256]
num_keypoints = 17
lr = 5e-4
lr_step = [170, 200]
optimizer_type = 'Adam'
checkpoint_interval = 10
eval_interval = 10
dataset_info = 'data/coco/pose_person_dataset_info.py'
target_type = 'GaussianHeatmap'
channel_cfg = dict(
num_output_channels='${num_keypoints}',
dataset_joints='${num_keypoints}',
# dataset_channel=[list(range(num_keypoints))],
# inference_channel=list(range(num_keypoints))
)
# model settings
model = dict(
type='TopDown',
pretrained='http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/'
'EVTorch/modelzoo/pose/hrnet/hrnet_w48_pretrained.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=48,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=False,
target_type=target_type,
modulate_kernel=11,
use_udp=True))
data_root = 'data/coco'
data_cfg = dict(
image_size='${image_size}',
heatmap_size=[
'round(${image_size}[0] / 4 + 0.5)',
'round(${image_size}[1] / 4 + 0.5)'
],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
# dataset_channel=channel_cfg['dataset_channel'],
# inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
# use_gt_bbox=False,
det_bbox_thr=0.0,
# bbox_file=
# f'{data_root}/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',
)
train_pipeline = [
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine', use_udp=True),
dict(type='MMToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='TopDownGenerateTarget',
sigma=2,
encoding='UDP',
target_type=target_type),
dict(
type='PoseCollect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'image_id', 'joints_3d', 'joints_3d_visible',
'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='TopDownAffine', use_udp=True),
dict(type='MMToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='PoseCollect',
keys=['img'],
meta_keys=[
'image_file', 'image_id', 'center', 'scale', 'rotation',
'bbox_score', 'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_source_cfg = dict(
type='PoseTopDownSource',
data_cfg=data_cfg,
dataset_info='${dataset_info}')
data = dict(
imgs_per_gpu='${imgs_per_gpu}',
workers_per_gpu=2,
train=dict(
type='PoseTopDownDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
**data_source_cfg),
pipeline=train_pipeline),
val=dict(
type='PoseTopDownDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
test_mode=True,
**data_source_cfg),
pipeline=val_pipeline),
test=dict(
type='PoseTopDownDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
test_mode=True,
**data_source_cfg),
pipeline=test_pipeline),
)
eval_config = dict(interval='${eval_interval}', metric='mAP', save_best='AP')
evaluator_args = dict(soft_nms=False, use_nms=True, oks_thr=0.9, vis_thr=0.2)
eval_pipelines = [
dict(
mode='test',
data='${data.val}',
# data=dict(**data['val'], imgs_per_gpu=1),
evaluators=[dict(type='CoCoPoseTopDownEvaluator', **evaluator_args)])
]
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval='${checkpoint_interval}')
optimizer = dict(
type='${optimizer_type}',
lr='${lr}',
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step='${lr_step}')
total_epochs = 210
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
work_dir = ''
load_from = ''
export = dict(use_jit=False)
checkpoint_sync_export = True