configs/pose/hand/litehrnet_30_coco_wholebody_hand_256x256.py (155 lines of code) (raw):
# oss_io_config = dict(
# ak_id='your oss ak id',
# ak_secret='your oss ak secret',
# hosts='oss-cn-zhangjiakou.aliyuncs.com', # your oss hosts
# buckets=['your_bucket']) # your oss buckets
oss_sync_config = dict(other_file_list=['**/events.out.tfevents*', '**/*log*'])
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=10)
optimizer = dict(type='Adam', lr=5e-4)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
channel_cfg = dict(
num_output_channels=21,
dataset_joints=21,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20
])
# model settings
model = dict(
type='TopDown',
pretrained=False,
backbone=dict(
type='LiteHRNet',
in_channels=3,
extra=dict(
stem=dict(stem_channels=32, out_channels=32, expand_ratio=1),
num_stages=3,
stages_spec=dict(
num_modules=(3, 8, 3),
num_branches=(2, 3, 4),
num_blocks=(2, 2, 2),
module_type=('LITE', 'LITE', 'LITE'),
with_fuse=(True, True, True),
reduce_ratios=(8, 8, 8),
num_channels=(
(40, 80),
(40, 80, 160),
(40, 80, 160, 320),
)),
with_head=True,
)),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=40,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = 'data/coco'
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
)
train_pipeline = [
# dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=30,
scale_factor=0.25),
dict(type='TopDownAffine'),
dict(type='MMToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=3),
dict(
type='PoseCollect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'image_id', 'joints_3d', 'joints_3d_visible',
'center', 'scale', 'rotation', 'flip_pairs'
])
]
val_pipeline = [
dict(type='TopDownAffine'),
dict(type='MMToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='PoseCollect',
keys=['img'],
meta_keys=[
'image_file', 'image_id', 'center', 'scale', 'rotation',
'flip_pairs'
])
]
test_pipeline = val_pipeline
data_source_cfg = dict(type='HandCocoPoseTopDownSource', data_cfg=data_cfg)
data = dict(
imgs_per_gpu=32, # for train
workers_per_gpu=2, # for train
# imgs_per_gpu=1, # for test
# workers_per_gpu=1, # for test
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='HandCocoWholeBodyDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json',
img_prefix=f'{data_root}/train2017/',
**data_source_cfg),
pipeline=train_pipeline),
val=dict(
type='HandCocoWholeBodyDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
test_mode=True,
**data_source_cfg),
pipeline=val_pipeline),
test=dict(
type='HandCocoWholeBodyDataset',
data_source=dict(
ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root}/val2017/',
test_mode=True,
**data_source_cfg),
pipeline=val_pipeline),
)
eval_config = dict(interval=10, metric='PCK', save_best='PCK')
evaluator_args = dict(
metric_names=['PCK', 'AUC', 'EPE', 'NME'], pck_thr=0.2, auc_nor=30)
eval_pipelines = [
dict(
mode='test',
data=dict(**data['val'], imgs_per_gpu=1),
evaluators=[dict(type='KeyPointEvaluator', **evaluator_args)])
]
export = dict(use_jit=False)
checkpoint_sync_export = True