configs/selfsup/mocov2/mocov2_rn50_8xb32_200e_jpg.py (60 lines of code) (raw):

_base_ = '../../base.py' # model settings model = dict( type='MOCO', pretrained=False, train_preprocess=['gaussianBlur'], queue_len=65536, feat_dim=128, momentum=0.999, backbone=dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN')), neck=dict( type='NonLinearNeckV1', in_channels=2048, hid_channels=2048, out_channels=128, with_avg_pool=True), head=dict(type='ContrastiveHead', temperature=0.2)) # dataset settings data_train_list = 'imagenet_raw/meta/train.txt' data_train_root = 'imagenet_raw/' dataset_type = 'MultiViewDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224, scale=(0.2, 1.)), dict( type='RandomAppliedTrans', transforms=[ dict( type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4) ], p=0.8), dict(type='RandomGrayscale', p=0.2), # dict( # type='RandomAppliedTrans', # transforms=[ # dict( # type='GaussianBlur', # kernel_size=23, # sigma = (0.1, 2.0) # ) # ], # p=0.5), dict(type='RandomHorizontalFlip'), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), dict(type='Collect', keys=['img']) ] data = dict( imgs_per_gpu=32, # total 32*8=256 workers_per_gpu=4, drop_last=True, train=dict( type=dataset_type, data_source=dict( type='SSLSourceImageList', list_file=data_train_list, root=data_train_root), num_views=[1, 1], pipelines=[train_pipeline, train_pipeline])) # optimizer optimizer = dict(type='SGD', lr=0.03, weight_decay=0.0001, momentum=0.9) # learning policy lr_config = dict(policy='step', step=[120, 160]) # lr_config = dict(policy='CosineAnnealing', min_lr=0.) checkpoint_config = dict(interval=10) # runtime settings total_epochs = 200