# Copyright (c) 2022 Snap Inc. All rights reserved.
import itertools
import os
from distutils.version import LooseVersion

import timm
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_

from ..modelzoo import efficientformer as model_urls
from ..registry import BACKBONES

if LooseVersion(timm.__version__) <= LooseVersion('0.8.2'):
    from timm.models.layers.helpers import to_2tuple
else:
    from timm.layers.helpers import to_2tuple


class Attention(torch.nn.Module):

    def __init__(self,
                 dim=384,
                 key_dim=32,
                 num_heads=8,
                 attn_ratio=4,
                 resolution=7):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim**-0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2
        self.qkv = nn.Linear(dim, h)
        self.proj = nn.Linear(self.dh, dim)

        points = list(itertools.product(range(resolution), range(resolution)))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N))

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x (B,N,C)
        B, N, C = x.shape
        qkv = self.qkv(x)
        q, k, v = qkv.reshape(B, N, self.num_heads,
                              -1).split([self.key_dim, self.key_dim, self.d],
                                        dim=3)
        q = q.permute(0, 2, 1, 3)
        k = k.permute(0, 2, 1, 3)
        v = v.permute(0, 2, 1, 3)

        attn = ((q @ k.transpose(-2, -1)) * self.scale +
                (self.attention_biases[:, self.attention_bias_idxs]
                 if self.training else self.ab))
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
        x = self.proj(x)
        return x


def stem(in_chs, out_chs):
    return nn.Sequential(
        nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1),
        nn.BatchNorm2d(out_chs // 2),
        nn.ReLU(),
        nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1),
        nn.BatchNorm2d(out_chs),
        nn.ReLU(),
    )


class Embedding(nn.Module):
    """
    Patch Embedding that is implemented by a layer of conv.
    Input: tensor in shape [B, C, H, W]
    Output: tensor in shape [B, C, H/stride, W/stride]
    """

    def __init__(self,
                 patch_size=16,
                 stride=16,
                 padding=0,
                 in_chans=3,
                 embed_dim=768,
                 norm_layer=nn.BatchNorm2d):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=padding)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x


class Flat(nn.Module):

    def __init__(self, ):
        super().__init__()

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        return x


class Pooling(nn.Module):
    """
    Implementation of pooling for PoolFormer
    --pool_size: pooling size
    """

    def __init__(self, pool_size=3):
        super().__init__()
        self.pool = nn.AvgPool2d(
            pool_size,
            stride=1,
            padding=pool_size // 2,
            count_include_pad=False)

    def forward(self, x):
        return self.pool(x) - x


class LinearMlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Mlp(nn.Module):
    """
    Implementation of MLP with 1*1 convolutions.
    Input: tensor with shape [B, C, H, W]
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)

        self.norm1 = nn.BatchNorm2d(hidden_features)
        self.norm2 = nn.BatchNorm2d(out_features)

    def _init_weights(self, m):
        if isinstance(m, nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.fc1(x)

        x = self.norm1(x)

        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)

        x = self.norm2(x)

        x = self.drop(x)
        return x


class Meta3D(nn.Module):

    def __init__(self,
                 dim,
                 mlp_ratio=4.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm,
                 drop=0.,
                 drop_path=0.,
                 use_layer_scale=True,
                 layer_scale_init_value=1e-5):

        super().__init__()

        self.norm1 = norm_layer(dim)
        self.token_mixer = Attention(dim)
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = LinearMlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(0).unsqueeze(0) *
                self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(0).unsqueeze(0) *
                self.mlp(self.norm2(x)))

        else:
            x = x + self.drop_path(self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Meta4D(nn.Module):

    def __init__(self,
                 dim,
                 pool_size=3,
                 mlp_ratio=4.,
                 act_layer=nn.GELU,
                 drop=0.,
                 drop_path=0.,
                 use_layer_scale=True,
                 layer_scale_init_value=1e-5):
        super().__init__()

        self.token_mixer = Pooling(pool_size=pool_size)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:

            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
                self.token_mixer(x))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        else:
            x = x + self.drop_path(self.token_mixer(x))
            x = x + self.drop_path(self.mlp(x))
        return x


def meta_blocks(dim,
                index,
                layers,
                pool_size=3,
                mlp_ratio=4.,
                act_layer=nn.GELU,
                norm_layer=nn.LayerNorm,
                drop_rate=.0,
                drop_path_rate=0.,
                use_layer_scale=True,
                layer_scale_init_value=1e-5,
                vit_num=1):
    blocks = []
    if index == 3 and vit_num == layers[index]:
        blocks.append(Flat())
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
            sum(layers) - 1)
        if index == 3 and layers[index] - block_idx <= vit_num:
            blocks.append(
                Meta3D(
                    dim,
                    mlp_ratio=mlp_ratio,
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                    drop=drop_rate,
                    drop_path=block_dpr,
                    use_layer_scale=use_layer_scale,
                    layer_scale_init_value=layer_scale_init_value,
                ))
        else:
            blocks.append(
                Meta4D(
                    dim,
                    pool_size=pool_size,
                    mlp_ratio=mlp_ratio,
                    act_layer=act_layer,
                    drop=drop_rate,
                    drop_path=block_dpr,
                    use_layer_scale=use_layer_scale,
                    layer_scale_init_value=layer_scale_init_value,
                ))
            if index == 3 and layers[index] - block_idx - 1 == vit_num:
                blocks.append(Flat())

    blocks = nn.Sequential(*blocks)
    return blocks


@BACKBONES.register_module
class EfficientFormer(nn.Module):

    def __init__(self,
                 layers,
                 embed_dims=None,
                 mlp_ratios=4,
                 downsamples=None,
                 pool_size=3,
                 norm_layer=nn.LayerNorm,
                 act_layer=nn.GELU,
                 num_classes=1000,
                 down_patch_size=3,
                 down_stride=2,
                 down_pad=1,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 use_layer_scale=True,
                 layer_scale_init_value=1e-5,
                 fork_feat=False,
                 vit_num=0,
                 distillation=True,
                 **kwargs):
        super().__init__()

        if not fork_feat:
            self.num_classes = num_classes
        self.fork_feat = fork_feat

        self.patch_embed = stem(3, embed_dims[0])

        network = []
        for i in range(len(layers)):
            stage = meta_blocks(
                embed_dims[i],
                i,
                layers,
                pool_size=pool_size,
                mlp_ratio=mlp_ratios,
                act_layer=act_layer,
                norm_layer=norm_layer,
                drop_rate=drop_rate,
                drop_path_rate=drop_path_rate,
                use_layer_scale=use_layer_scale,
                layer_scale_init_value=layer_scale_init_value,
                vit_num=vit_num)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
                # downsampling between two stages
                network.append(
                    Embedding(
                        patch_size=down_patch_size,
                        stride=down_stride,
                        padding=down_pad,
                        in_chans=embed_dims[i],
                        embed_dim=embed_dims[i + 1]))

        self.network = nn.ModuleList(network)

        if self.fork_feat:
            # add a norm layer for each output
            self.out_indices = [0, 2, 4, 6]
            for i_emb, i_layer in enumerate(self.out_indices):
                if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                    layer = nn.Identity()
                else:
                    layer = norm_layer(embed_dims[i_emb])
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)
        else:
            # Classifier head
            self.norm = norm_layer(embed_dims[-1])
            self.head = nn.Linear(
                embed_dims[-1], num_classes) if num_classes > 0 \
                else nn.Identity()
            self.dist = distillation
            if self.dist:
                self.dist_head = nn.Linear(
                    embed_dims[-1], num_classes) if num_classes > 0 \
                    else nn.Identity()

        suffix_dict = {1: 'l1', 4: 'l3', 8: 'l7'}
        self.default_pretrained_model_path = model_urls.get(
            self.__class__.__name__ + '_' + suffix_dict[vit_num], None)

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                if len(x.shape) == 4:
                    x = x.permute(0, 2, 3, 1)
                    x_out = norm_layer(x)
                    x = x.permute(0, 3, 1, 2).contiguous()
                else:
                    x_out = norm_layer(x)
                outs.append(x_out)
        if self.fork_feat:
            return outs
        return x

    def forward(self, x):
        x = self.patch_embed(x)
        x = self.forward_tokens(x)
        if self.fork_feat:
            # otuput features of four stages for dense prediction
            return x
        x = self.norm(x)

        # TODO: support kd pipeline
        if self.dist:
            cls_out = self.head(x.mean(-2)), self.dist_head(x.mean(-2))
            cls_out = (cls_out[0] + cls_out[1]) / 2
        else:
            cls_out = self.head(x.mean(-2))
        # for image classification
        return [cls_out]
