easycv/models/ocr/backbones/det_mobilenet_v3.py (277 lines of code) (raw):

# Modified from https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppocr/modeling/backbones/det_mobilenet_v3.py import torch import torch.nn as nn import torch.nn.functional as F from easycv.models.registry import BACKBONES class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3., inplace=self.inplace) / 6. # out = max(0, min(1, slop*x+offset)) # paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None) class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): # torch: F.relu6(x + 3., inplace=self.inplace) / 6. # paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6. return F.relu6(1.2 * x + 3., inplace=self.inplace) / 6. class GELU(nn.Module): def __init__(self, inplace=True): super(GELU, self).__init__() self.inplace = inplace def forward(self, x): return torch.nn.functional.gelu(x) class Swish(nn.Module): def __init__(self, inplace=True): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: x.mul_(torch.sigmoid(x)) return x else: return x * torch.sigmoid(x) class Activation(nn.Module): def __init__(self, act_type, inplace=True): super(Activation, self).__init__() act_type = act_type.lower() if act_type == 'relu': self.act = nn.ReLU(inplace=inplace) elif act_type == 'relu6': self.act = nn.ReLU6(inplace=inplace) elif act_type == 'sigmoid': raise NotImplementedError elif act_type == 'hard_sigmoid': self.act = Hsigmoid(inplace) elif act_type == 'hard_swish': self.act = Hswish(inplace=inplace) elif act_type == 'leakyrelu': self.act = nn.LeakyReLU(inplace=inplace) elif act_type == 'gelu': self.act = GELU(inplace=inplace) elif act_type == 'swish': self.act = Swish(inplace=inplace) else: raise NotImplementedError def forward(self, inputs): return self.act(inputs) def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1, if_act=True, act=None, name=None): super(ConvBNLayer, self).__init__() self.if_act = if_act self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_channels, ) if self.if_act: self.act = Activation(act_type=act, inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) if self.if_act: x = self.act(x) return x class SEModule(nn.Module): def __init__(self, in_channels, reduction=4, name=''): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=in_channels // reduction, kernel_size=1, stride=1, padding=0, bias=True) self.relu1 = Activation(act_type='relu', inplace=True) self.conv2 = nn.Conv2d( in_channels=in_channels // reduction, out_channels=in_channels, kernel_size=1, stride=1, padding=0, bias=True) self.hard_sigmoid = Activation(act_type='hard_sigmoid', inplace=True) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = self.relu1(outputs) outputs = self.conv2(outputs) outputs = self.hard_sigmoid(outputs) outputs = inputs * outputs return outputs class ResidualUnit(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, use_se, act=None, name=''): super(ResidualUnit, self).__init__() self.if_shortcut = stride == 1 and in_channels == out_channels self.if_se = use_se self.expand_conv = ConvBNLayer( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, if_act=True, act=act, name=name + '_expand') self.bottleneck_conv = ConvBNLayer( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), groups=mid_channels, if_act=True, act=act, name=name + '_depthwise') if self.if_se: self.mid_se = SEModule(mid_channels, name=name + '_se') self.linear_conv = ConvBNLayer( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, if_act=False, act=None, name=name + '_linear') def forward(self, inputs): x = self.expand_conv(inputs) x = self.bottleneck_conv(x) if self.if_se: x = self.mid_se(x) x = self.linear_conv(x) if self.if_shortcut: x = inputs + x return x @BACKBONES.register_module() class OCRDetMobileNetV3(nn.Module): def __init__(self, in_channels=3, model_name='large', scale=0.5, disable_se=False, **kwargs): """ the MobilenetV3 backbone network for detection module. Args: params(dict): the super parameters for build network """ super(OCRDetMobileNetV3, self).__init__() self.disable_se = disable_se if model_name == 'large': cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'relu', 1], [3, 64, 24, False, 'relu', 2], [3, 72, 24, False, 'relu', 1], [5, 72, 40, True, 'relu', 2], [5, 120, 40, True, 'relu', 1], [5, 120, 40, True, 'relu', 1], [3, 240, 80, False, 'hard_swish', 2], [3, 200, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 480, 112, True, 'hard_swish', 1], [3, 672, 112, True, 'hard_swish', 1], [5, 672, 160, True, 'hard_swish', 2], [5, 960, 160, True, 'hard_swish', 1], [5, 960, 160, True, 'hard_swish', 1], ] cls_ch_squeeze = 960 elif model_name == 'small': cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'relu', 2], [3, 72, 24, False, 'relu', 2], [3, 88, 24, False, 'relu', 1], [5, 96, 40, True, 'hard_swish', 2], [5, 240, 40, True, 'hard_swish', 1], [5, 240, 40, True, 'hard_swish', 1], [5, 120, 48, True, 'hard_swish', 1], [5, 144, 48, True, 'hard_swish', 1], [5, 288, 96, True, 'hard_swish', 2], [5, 576, 96, True, 'hard_swish', 1], [5, 576, 96, True, 'hard_swish', 1], ] cls_ch_squeeze = 576 else: raise NotImplementedError('mode[' + model_name + '_model] is not implemented!') supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] assert scale in supported_scale, \ 'supported scale are {} but input scale is {}'.format(supported_scale, scale) inplanes = 16 # conv1 self.conv = ConvBNLayer( in_channels=in_channels, out_channels=make_divisible(inplanes * scale), kernel_size=3, stride=2, padding=1, groups=1, if_act=True, act='hard_swish', name='conv1') self.stages = nn.ModuleList() self.out_channels = [] block_list = [] i = 0 inplanes = make_divisible(inplanes * scale) for (k, exp, c, se, nl, s) in cfg: se = se and not self.disable_se if s == 2 and i > 2: self.out_channels.append(inplanes) self.stages.append(nn.Sequential(*block_list)) block_list = [] block_list.append( ResidualUnit( in_channels=inplanes, mid_channels=make_divisible(scale * exp), out_channels=make_divisible(scale * c), kernel_size=k, stride=s, use_se=se, act=nl, name='conv' + str(i + 2))) inplanes = make_divisible(scale * c) i += 1 block_list.append( ConvBNLayer( in_channels=inplanes, out_channels=make_divisible(scale * cls_ch_squeeze), kernel_size=1, stride=1, padding=0, groups=1, if_act=True, act='hard_swish', name='conv_last')) self.stages.append(nn.Sequential(*block_list)) self.out_channels.append(make_divisible(scale * cls_ch_squeeze)) # for i, stage in enumerate(self.stages): # self.add_sublayer(sublayer=stage, name="stage{}".format(i)) def forward(self, x): x = self.conv(x) out_list = [] for stage in self.stages: x = stage(x) out_list.append(x) return out_list