easycv/models/segmentation/heads/pixel_decoder.py (334 lines of code) (raw):
import copy
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from torch import nn
from torch.cuda.amp import autocast
from torch.nn import functional as F
from torch.nn.init import normal_
from .transformer_decoder import PositionEmbeddingSine, _get_activation_fn
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def c2_xavier_fill(module: nn.Module):
"""
Initialize `module.weight` using the "XavierFill" implemented in Caffe2.
Also initializes `module.bias` to 0.
Args:
module (torch.nn.Module): module to initialize.
"""
# Caffe2 implementation of XavierFill in fact
# corresponds to kaiming_uniform_ in PyTorch
# pyre-fixme[6]: For 1st param expected `Tensor` but got `Union[Module, Tensor]`.
nn.init.kaiming_uniform_(module.weight, a=1)
if module.bias is not None:
# pyre-fixme[6]: Expected `Tensor` for 1st param but got `Union[nn.Module,
# torch.Tensor]`.
nn.init.constant_(module.bias, 0)
class Conv2d(torch.nn.Conv2d):
"""
A wrapper around :class:`torch.nn.Conv2d` to support empty inputs and more features.
"""
def __init__(self, *args, **kwargs):
"""
Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`:
Args:
norm (nn.Module, optional): a normalization layer
activation (callable(Tensor) -> Tensor): a callable activation function
It assumes that norm layer is used before activation.
"""
norm = kwargs.pop('norm', None)
activation = kwargs.pop('activation', None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
# torchscript does not support SyncBatchNorm yet
# https://github.com/pytorch/pytorch/issues/40507
# and we skip these codes in torchscript since:
# 1. currently we only support torchscript in evaluation mode
# 2. features needed by exporting module to torchscript are added in PyTorch 1.6 or
# later version, `Conv2d` in these PyTorch versions has already supported empty inputs.
if not torch.jit.is_scripting():
if x.numel() == 0 and self.training:
# https://github.com/pytorch/pytorch/issues/12013
assert not isinstance(
self.norm, torch.nn.SyncBatchNorm
), 'SyncBatchNorm does not support empty inputs!'
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
# Modified from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/pixel_decoder/msdeformattn.py
class MSDeformAttnTransformerEncoderOnly(nn.Module):
def __init__(
self,
d_model=256,
nhead=8,
num_encoder_layers=6,
dim_feedforward=1024,
dropout=0.1,
activation='relu',
num_feature_levels=4,
enc_n_points=4,
):
super().__init__()
self.d_model = d_model
self.nhead = nhead
encoder_layer = MSDeformAttnTransformerEncoderLayer(
d_model, dim_feedforward, dropout, activation, num_feature_levels,
nhead, enc_n_points)
self.encoder = MSDeformAttnTransformerEncoder(encoder_layer,
num_encoder_layers)
self.level_embed = nn.Parameter(
torch.Tensor(num_feature_levels, d_model))
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
from easycv.thirdparty.deformable_attention.modules import MSDeformAttn
if isinstance(m, MSDeformAttn):
m._reset_parameters()
normal_(self.level_embed)
def get_valid_ratio(self, mask):
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def forward(self, srcs, pos_embeds):
masks = [
torch.zeros((x.size(0), x.size(2), x.size(3)),
device=x.device,
dtype=torch.bool) for x in srcs
]
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask,
pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(
spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros(
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
# encoder
memory = self.encoder(src_flatten, spatial_shapes, level_start_index,
valid_ratios, lvl_pos_embed_flatten,
mask_flatten)
return memory, spatial_shapes, level_start_index
class MSDeformAttnTransformerEncoderLayer(nn.Module):
def __init__(self,
d_model=256,
d_ffn=1024,
dropout=0.1,
activation='relu',
n_levels=4,
n_heads=8,
n_points=4):
super().__init__()
# self attention
from easycv.thirdparty.deformable_attention.modules import MSDeformAttn
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
def forward(self,
src,
pos,
reference_points,
spatial_shapes,
level_start_index,
padding_mask=None):
# self attention
src2 = self.self_attn(
self.with_pos_embed(src, pos), reference_points, src,
spatial_shapes, level_start_index, padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src
class MSDeformAttnTransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(
0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(
0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(self,
src,
spatial_shapes,
level_start_index,
valid_ratios,
pos=None,
padding_mask=None):
output = src
reference_points = self.get_reference_points(
spatial_shapes, valid_ratios, device=src.device)
for _, layer in enumerate(self.layers):
output = layer(output, pos, reference_points, spatial_shapes,
level_start_index, padding_mask)
return output
class MSDeformAttnPixelDecoder(nn.Module):
def __init__(
self,
input_stride,
input_channel,
*,
transformer_dropout: float = 0.0,
transformer_nheads: int = 8,
transformer_dim_feedforward: int = 1024,
transformer_enc_layers: int = 6,
conv_dim: int = 256,
mask_dim: int = 256,
norm: Optional[Union[str, Callable]] = 'GN',
# deformable transformer encoder args
transformer_in_features: List[int] = [1, 2, 3],
common_stride: int = 4,
):
"""
Args:
input_stride: stride of the input features
input_channel: channels of the input features
transformer_dropout: dropout probability in transformer
transformer_nheads: number of heads in transformer
transformer_dim_feedforward: dimension of feedforward network
transformer_enc_layers: number of transformer encoder layers
conv_dims: number of output channels for the intermediate conv layers.
mask_dim: number of output channels for the final conv layer.
norm (str or callable): normalization for all conv layers
"""
super().__init__()
self.in_features = [i for i in range(len(input_stride))]
self.feature_strides = input_stride
self.feature_channels = input_channel
# this is the input shape of transformer encoder (could use less features than pixel decoder
# transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride)
self.transformer_in_features = transformer_in_features # starting from "res2" to "res5"
transformer_in_channels = [
input_channel[i] for i in transformer_in_features
]
self.transformer_feature_strides = [
input_stride[i] for i in transformer_in_features
] # to decide extra FPN layers
self.transformer_num_feature_levels = len(transformer_in_features)
if self.transformer_num_feature_levels > 1:
input_proj_list = []
# from low resolution to high resolution (res5 -> res2)
for in_channels in transformer_in_channels[::-1]:
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, conv_dim, kernel_size=1),
nn.GroupNorm(32, conv_dim),
))
self.input_proj = nn.ModuleList(input_proj_list)
else:
self.input_proj = nn.ModuleList([
nn.Sequential(
nn.Conv2d(
transformer_in_channels[-1], conv_dim, kernel_size=1),
nn.GroupNorm(32, conv_dim),
)
])
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
self.transformer = MSDeformAttnTransformerEncoderOnly(
d_model=conv_dim,
dropout=transformer_dropout,
nhead=transformer_nheads,
dim_feedforward=transformer_dim_feedforward,
num_encoder_layers=transformer_enc_layers,
num_feature_levels=self.transformer_num_feature_levels,
)
N_steps = conv_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
self.mask_dim = mask_dim
# use 1x1 conv instead
self.mask_features = Conv2d(
conv_dim,
mask_dim,
kernel_size=1,
stride=1,
padding=0,
)
c2_xavier_fill(self.mask_features)
self.maskformer_num_feature_levels = 3 # always use 3 scales
self.common_stride = common_stride
# extra fpn levels
stride = min(self.transformer_feature_strides)
self.num_fpn_levels = int(
np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
# use_bias = norm == ""
use_bias = False
for idx, in_channels in enumerate(
self.feature_channels[:self.num_fpn_levels]):
lateral_norm = torch.nn.GroupNorm(32, conv_dim)
output_norm = torch.nn.GroupNorm(32, conv_dim)
lateral_conv = Conv2d(
in_channels,
conv_dim,
kernel_size=1,
bias=use_bias,
norm=lateral_norm)
output_conv = Conv2d(
conv_dim,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
activation=F.relu,
)
c2_xavier_fill(lateral_conv)
c2_xavier_fill(output_conv)
self.add_module('adapter_{}'.format(idx + 1), lateral_conv)
self.add_module('layer_{}'.format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
@autocast(enabled=False)
def forward_features(self, features):
srcs = []
pos = []
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.transformer_in_features[::-1]):
x = features[f].float(
) # deformable detr does not support half precision
srcs.append(self.input_proj[idx](x))
pos.append(self.pe_layer(x))
y, spatial_shapes, level_start_index = self.transformer(srcs, pos)
bs = y.shape[0]
split_size_or_sections = [None] * self.transformer_num_feature_levels
for i in range(self.transformer_num_feature_levels):
if i < self.transformer_num_feature_levels - 1:
split_size_or_sections[i] = level_start_index[
i + 1] - level_start_index[i]
else:
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
y = torch.split(y, split_size_or_sections, dim=1)
out = []
multi_scale_features = []
num_cur_levels = 0
for i, z in enumerate(y):
out.append(
z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0],
spatial_shapes[i][1]))
# append `out` with extra FPN levels
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]):
x = features[f].float()
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
cur_fpn = lateral_conv(x)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + F.interpolate(
out[-1],
size=cur_fpn.shape[-2:],
mode='bilinear',
align_corners=False)
y = output_conv(y)
out.append(y)
for o in out:
if num_cur_levels < self.maskformer_num_feature_levels:
multi_scale_features.append(o)
num_cur_levels += 1
return self.mask_features(out[-1]), out[0], multi_scale_features