easy_rec/python/compat/array_ops.py (102 lines of code) (raw):
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import gen_math_ops
def convert_to_int_tensor(tensor, name, dtype=tf.int32):
"""Converts the given value to an integer Tensor."""
tensor = ops.convert_to_tensor(tensor, name=name, preferred_dtype=dtype)
if tensor.dtype.is_integer:
tensor = gen_math_ops.cast(tensor, dtype)
else:
raise TypeError('%s must be an integer tensor; dtype=%s' %
(name, tensor.dtype))
return tensor
def _with_nonzero_rank(data):
"""If `data` is scalar, then add a dimension; otherwise return as-is."""
if data.shape.ndims is not None:
if data.shape.ndims == 0:
return tf.stack([data])
else:
return data
else:
data_shape = tf.shape(data)
data_ndims = tf.rank(data)
return tf.reshape(data, tf.concat([[1], data_shape], axis=0)[-data_ndims:])
def get_positive_axis(axis, ndims):
"""Validate an `axis` parameter, and normalize it to be positive.
If `ndims` is known (i.e., not `None`), then check that `axis` is in the
range `-ndims <= axis < ndims`, and return `axis` (if `axis >= 0`) or
`axis + ndims` (otherwise).
If `ndims` is not known, and `axis` is positive, then return it as-is.
If `ndims` is not known, and `axis` is negative, then report an error.
Args:
axis: An integer constant
ndims: An integer constant, or `None`
Returns:
The normalized `axis` value.
Raises:
ValueError: If `axis` is out-of-bounds, or if `axis` is negative and
`ndims is None`.
"""
if not isinstance(axis, int):
raise TypeError('axis must be an int; got %s' % type(axis).__name__)
if ndims is not None:
if 0 <= axis < ndims:
return axis
elif -ndims <= axis < 0:
return axis + ndims
else:
raise ValueError('axis=%s out of bounds: expected %s<=axis<%s' %
(axis, -ndims, ndims))
elif axis < 0:
raise ValueError('axis may only be negative if ndims is statically known.')
return axis
def tile_one_dimension(data, axis, multiple):
"""Tiles a single dimension of a tensor."""
# Assumes axis is a nonnegative int.
if data.shape.ndims is not None:
multiples = [1] * data.shape.ndims
multiples[axis] = multiple
else:
ones_value = tf.ones(tf.rank(data), tf.int32)
multiples = tf.concat(
[ones_value[:axis], [multiple], ones_value[axis + 1:]], axis=0)
return tf.tile(data, multiples)
def _all_dimensions(x):
"""Returns a 1D-tensor listing all dimensions in x."""
# Fast path: avoid creating Rank and Range ops if ndims is known.
if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
return constant_op.constant(np.arange(x.get_shape().ndims), dtype=tf.int32)
if (isinstance(x, sparse_tensor.SparseTensor) and
x.dense_shape.get_shape().is_fully_defined()):
r = x.dense_shape.get_shape().dims[0].value # sparse.dense_shape is 1-D.
return constant_op.constant(np.arange(r), dtype=tf.int32)
# Otherwise, we rely on `range` and `rank` to do the right thing at runtime.
return gen_math_ops._range(0, tf.rank(x), 1)
# This op is intended to exactly match the semantics of numpy.repeat, with
# one exception: numpy.repeat has special (and somewhat non-intuitive) behavior
# when axis is not specified. Rather than implement that special behavior, we
# simply make `axis` be a required argument.
#
# External (OSS) `tf.repeat` feature request:
# https://github.com/tensorflow/tensorflow/issues/8246
def repeat_with_axis(data, repeats, axis, name=None):
"""Repeats elements of `data`.
Args:
data: An `N`-dimensional tensor.
repeats: A 1-D integer tensor specifying how many times each element in
`axis` should be repeated. `len(repeats)` must equal `data.shape[axis]`.
Supports broadcasting from a scalar value.
axis: `int`. The axis along which to repeat values. Must be less than
`max(N, 1)`.
name: A name for the operation.
Returns:
A tensor with `max(N, 1)` dimensions. Has the same shape as `data`,
except that dimension `axis` has size `sum(repeats)`.
#### Examples:
```python
>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
['a', 'a', 'a', 'c', 'c']
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
[[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]]
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
[[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]]
```
"""
if not isinstance(axis, int):
raise TypeError('axis must be an int; got %s' % type(axis).__name__)
with ops.name_scope(name, 'Repeat', [data, repeats]):
data = ops.convert_to_tensor(data, name='data')
repeats = convert_to_int_tensor(repeats, name='repeats')
repeats.shape.with_rank_at_most(1)
# If `data` is a scalar, then upgrade it to a vector.
data = _with_nonzero_rank(data)
data_shape = tf.shape(data)
# If `axis` is negative, then convert it to a positive value.
axis = get_positive_axis(axis, data.shape.ndims)
# Check data Tensor shapes.
if repeats.shape.ndims == 1:
data.shape.dims[axis].assert_is_compatible_with(repeats.shape[0])
# If we know that `repeats` is a scalar, then we can just tile & reshape.
if repeats.shape.ndims == 0:
expanded = tf.expand_dims(data, axis + 1)
tiled = tile_one_dimension(expanded, axis + 1, repeats)
result_shape = tf.concat([data_shape[:axis], [-1], data_shape[axis + 1:]],
axis=0)
return tf.reshape(tiled, result_shape)
# Broadcast the `repeats` tensor so rank(repeats) == axis + 1.
if repeats.shape.ndims != axis + 1:
repeats_shape = tf.shape(repeats)
repeats_ndims = tf.rank(repeats)
broadcast_shape = tf.concat(
[data_shape[:axis + 1 - repeats_ndims], repeats_shape], axis=0)
repeats = tf.broadcast_to(repeats, broadcast_shape)
repeats.set_shape([None] * (axis + 1))
# Create a "sequence mask" based on `repeats`, where slices across `axis`
# contain one `True` value for each repetition. E.g., if
# `repeats = [3, 1, 2]`, then `mask = [[1, 1, 1], [1, 0, 0], [1, 1, 0]]`.
max_repeat = gen_math_ops.maximum(
0, gen_math_ops._max(repeats, _all_dimensions(repeats)))
mask = tf.sequence_mask(repeats, max_repeat)
# Add a new dimension around each value that needs to be repeated, and
# then tile that new dimension to match the maximum number of repetitions.
expanded = tf.expand_dims(data, axis + 1)
tiled = tile_one_dimension(expanded, axis + 1, max_repeat)
# Use `boolean_mask` to discard the extra repeated values. This also
# flattens all dimensions up through `axis`.
masked = tf.boolean_mask(tiled, mask)
# Reshape the output tensor to add the outer dimensions back.
if axis == 0:
result = masked
else:
result_shape = tf.concat([data_shape[:axis], [-1], data_shape[axis + 1:]],
axis=0)
result = tf.reshape(masked, result_shape)
# Preserve shape information.
if data.shape.ndims is not None:
new_axis_size = 0 if repeats.shape[0] == 0 else None
result.set_shape(data.shape[:axis].concatenate(
[new_axis_size]).concatenate(data.shape[axis + 1:]))
return result
def repeat(input, repeats, axis=None, name=None): # pylint: disable=redefined-builtin
"""Repeat elements of `input`.
Args:
input: An `N`-dimensional Tensor.
repeats: An 1-D `int` Tensor. The number of repetitions for each element.
repeats is broadcasted to fit the shape of the given axis. `len(repeats)`
must equal `input.shape[axis]` if axis is not None.
axis: An int. The axis along which to repeat values. By default (axis=None),
use the flattened input array, and return a flat output array.
name: A name for the operation.
Returns:
A Tensor which has the same shape as `input`, except along the given axis.
If axis is None then the output array is flattened to match the flattened
input array.
#### Examples:
```python
>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
['a', 'a', 'a', 'c', 'c']
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
[[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]]
>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
[[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]]
>>> repeat(3, repeats=4)
[3, 3, 3, 3]
>>> repeat([[1,2], [3,4]], repeats=2)
[1, 1, 2, 2, 3, 3, 4, 4]
```
"""
if axis is None:
input = tf.reshape(input, [-1])
axis = 0
return repeat_with_axis(input, repeats, axis, name)