easy_rec/python/compat/exporter.py (220 lines of code) (raw):

# -*- encoding:utf-8 -*- # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """`Exporter` class represents different flavors of model export.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.estimator import gc from tensorflow.python.estimator import util from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.exporter import Exporter from tensorflow.python.estimator.exporter import _SavedModelExporter from tensorflow.python.framework import errors_impl from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging from tensorflow.python.summary import summary_iterator from easy_rec.python.utils import io_util def _loss_smaller(best_eval_result, current_eval_result): """Compares two evaluation results and returns true if the 2nd one is smaller. Both evaluation results should have the values for MetricKeys.LOSS, which are used for comparison. Args: best_eval_result: best eval metrics. current_eval_result: current eval metrics. Returns: True if the loss of current_eval_result is smaller; otherwise, False. Raises: ValueError: If input eval result is None or no loss is available. """ default_key = metric_keys.MetricKeys.LOSS if not best_eval_result or default_key not in best_eval_result: raise ValueError( 'best_eval_result cannot be empty or no loss is found in it.') if not current_eval_result or default_key not in current_eval_result: raise ValueError( 'current_eval_result cannot be empty or no loss is found in it.') return best_eval_result[default_key] > current_eval_result[default_key] def _verify_compare_fn_args(compare_fn): """Verifies compare_fn arguments.""" args = set(util.fn_args(compare_fn)) if 'best_eval_result' not in args: raise ValueError('compare_fn (%s) must include best_eval_result argument.' % compare_fn) if 'current_eval_result' not in args: raise ValueError( 'compare_fn (%s) must include current_eval_result argument.' % compare_fn) non_valid_args = list(args - set(['best_eval_result', 'current_eval_result'])) if non_valid_args: raise ValueError('compare_fn (%s) has following not expected args: %s' % (compare_fn, non_valid_args)) def _get_ckpt_version(path): _, tmp_name = os.path.split(path) tmp_name, _ = os.path.splitext(tmp_name) ver = tmp_name.split('-')[-1] return int(ver) class BestExporter(Exporter): """This class exports the serving graph and checkpoints of the best models. This class performs a model export everytime the new model is better than any existing model. """ def __init__(self, name='best_exporter', serving_input_receiver_fn=None, event_file_pattern='eval_val/*.tfevents.*', compare_fn=_loss_smaller, assets_extra=None, as_text=False, exports_to_keep=5): """Create an `Exporter` to use with `tf.estimator.EvalSpec`. Example of creating a BestExporter for training and evaluation: ```python def make_train_and_eval_fn(): # Set up feature columns. categorical_feature_a = ( tf.feature_column.categorical_column_with_hash_bucket(...)) categorical_feature_a_emb = embedding_column( categorical_column=categorical_feature_a, ...) ... # other feature columns estimator = tf.estimator.DNNClassifier( config=tf.estimator.RunConfig( model_dir='/my_model', save_summary_steps=100), feature_columns=[categorical_feature_a_emb, ...], hidden_units=[1024, 512, 256]) serving_feature_spec = tf.feature_column.make_parse_example_spec( categorical_feature_a_emb) serving_input_receiver_fn = ( tf.estimator.export.build_parsing_serving_input_receiver_fn( serving_feature_spec)) exporter = tf.estimator.BestExporter( name="best_exporter", serving_input_receiver_fn=serving_input_receiver_fn, exports_to_keep=5) train_spec = tf.estimator.TrainSpec(...) eval_spec = [tf.estimator.EvalSpec( input_fn=eval_input_fn, steps=100, exporters=exporter, start_delay_secs=0, throttle_secs=5)] return tf.estimator.DistributedTrainingSpec(estimator, train_spec, eval_spec) ``` Args: name: unique name of this `Exporter` that is going to be used in the export path. serving_input_receiver_fn: a function that takes no arguments and returns a `ServingInputReceiver`. event_file_pattern: event file name pattern relative to model_dir. If None, however, the exporter would not be preemption-safe. To be preemption-safe, event_file_pattern must be specified. compare_fn: a function that compares two evaluation results and returns true if current evaluation result is better. Follows the signature: * Args: * `best_eval_result`: This is the evaluation result of the best model. * `current_eval_result`: This is the evaluation result of current candidate model. * Returns: True if current evaluation result is better; otherwise, False. assets_extra: An optional dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. Defaults to `False`. exports_to_keep: Number of exports to keep. Older exports will be garbage-collected. Defaults to 5. Set to `None` to disable garbage collection. Raises: ValueError: if any argument is invalid. """ self._compare_fn = compare_fn if self._compare_fn is None: raise ValueError('`compare_fn` must not be None.') _verify_compare_fn_args(self._compare_fn) self._saved_model_exporter = _SavedModelExporter(name, serving_input_receiver_fn, assets_extra, as_text) self._event_file_pattern = event_file_pattern self._model_dir = None self._best_eval_result = None self._exports_to_keep = exports_to_keep if exports_to_keep is not None and exports_to_keep <= 0: raise ValueError( '`exports_to_keep`, if provided, must be a positive number. Got %s' % exports_to_keep) @property def name(self): return self._saved_model_exporter.name def export(self, estimator, export_path, checkpoint_path, eval_result, is_the_final_export): export_result = None if self._model_dir != estimator.model_dir and self._event_file_pattern: # Loads best metric from event files. tf_logging.info('Loading best metric from event files.') self._model_dir = estimator.model_dir full_event_file_pattern = os.path.join(self._model_dir, self._event_file_pattern) self._best_eval_result = self._get_best_eval_result( full_event_file_pattern, eval_result) if self._best_eval_result is None or self._compare_fn( best_eval_result=self._best_eval_result, current_eval_result=eval_result): tf_logging.info('Performing best model export.') self._best_eval_result = eval_result export_result = self._saved_model_exporter.export(estimator, export_path, checkpoint_path, eval_result, is_the_final_export) self._garbage_collect_exports(export_path) # cp best checkpoints to best folder model_dir, _ = os.path.split(checkpoint_path) # add / is to be compatiable with oss best_dir = os.path.join(model_dir, 'best_ckpt/') tf_logging.info('Copy best checkpoint %s to %s' % (checkpoint_path, best_dir)) if not gfile.Exists(best_dir): gfile.MakeDirs(best_dir) for tmp_file in gfile.Glob(checkpoint_path + '.*'): _, file_name = os.path.split(tmp_file) # skip temporary files if 'tempstate' in file_name: continue dst_path = os.path.join(best_dir, file_name) tf_logging.info('Copy file %s to %s' % (tmp_file, dst_path)) try: gfile.Copy(tmp_file, dst_path) except Exception as ex: tf_logging.warn('Copy file %s to %s failed: %s' % (tmp_file, dst_path, str(ex))) self._garbage_collect_ckpts(best_dir) return export_result def _garbage_collect_ckpts(self, best_dir): """Deletes older best ckpts, retaining only a given number of the most recent. Args: best_dir: the directory where the n best ckpts are saved. """ if self._exports_to_keep is None: return # delete older checkpoints tmp_files = gfile.Glob(os.path.join(best_dir, 'model.ckpt-*.meta')) if len(tmp_files) <= self._exports_to_keep: return tmp_steps = [_get_ckpt_version(x) for x in tmp_files] tmp_steps = sorted(tmp_steps) drop_num = len(tmp_steps) - self._exports_to_keep tf_logging.info( 'garbage_collect_ckpts: steps: %s export_to_keep: %d drop num: %d' % (str(tmp_steps), self._exports_to_keep, drop_num)) for ver in tmp_steps[:drop_num]: tmp_prefix = os.path.join(best_dir, 'model.ckpt-%d.*' % ver) for tmp_file in gfile.Glob(tmp_prefix): tf_logging.info('Remove ckpt file: ' + tmp_file) gfile.Remove(tmp_file) def _garbage_collect_exports(self, export_dir_base): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. """ if self._exports_to_keep is None: return def _export_version_parser(path): # create a simple parser that pulls the export_version from the directory. filename = os.path.basename(path.path) if not (len(filename) == 10 and filename.isdigit()): return None return path._replace(export_version=int(filename)) # pylint: disable=protected-access keep_filter = gc._largest_export_versions(self._exports_to_keep) delete_filter = gc._negation(keep_filter) for p in delete_filter( gc._get_paths(export_dir_base, parser=_export_version_parser)): try: gfile.DeleteRecursively(io_util.fix_oss_dir(p.path)) except errors_impl.NotFoundError as e: tf_logging.warn('Can not delete %s recursively: %s', p.path, e) # pylint: enable=protected-access def _get_best_eval_result(self, event_files, curr_eval_result): """Get the best eval result from event files. Args: event_files: Absolute pattern of event files. Returns: The best eval result. """ if not event_files: return None best_eval_result = None for event_file in gfile.Glob(os.path.join(event_files)): for event in summary_iterator.summary_iterator(event_file): if event.HasField('summary'): event_eval_result = {} event_eval_result['global_step'] = event.step if event.step >= curr_eval_result['global_step']: continue for value in event.summary.value: if value.HasField('simple_value'): event_eval_result[value.tag] = value.simple_value if len(event_eval_result) >= 2: if best_eval_result is None or self._compare_fn( best_eval_result, event_eval_result): best_eval_result = event_eval_result return best_eval_result class FinalExporter(Exporter): """This class exports the serving graph and checkpoints at the end. This class performs a single export at the end of training. """ def __init__(self, name, serving_input_receiver_fn, assets_extra=None, as_text=False): """Create an `Exporter` to use with `tf.estimator.EvalSpec`. Args: name: unique name of this `Exporter` that is going to be used in the export path. serving_input_receiver_fn: a function that takes no arguments and returns a `ServingInputReceiver`. assets_extra: An optional dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. Defaults to `False`. Raises: ValueError: if any arguments is invalid. """ self._saved_model_exporter = _SavedModelExporter(name, serving_input_receiver_fn, assets_extra, as_text) @property def name(self): return self._saved_model_exporter.name def export(self, estimator, export_path, checkpoint_path, eval_result, is_the_final_export): if not is_the_final_export: return None tf_logging.info('Performing the final export in the end of training.') return self._saved_model_exporter.export(estimator, export_path, checkpoint_path, eval_result, is_the_final_export) class LatestExporter(Exporter): """This class regularly exports the serving graph and checkpoints. In addition to exporting, this class also garbage collects stale exports. """ def __init__(self, name, serving_input_receiver_fn, assets_extra=None, as_text=False, exports_to_keep=5): """Create an `Exporter` to use with `tf.estimator.EvalSpec`. Args: name: unique name of this `Exporter` that is going to be used in the export path. serving_input_receiver_fn: a function that takes no arguments and returns a `ServingInputReceiver`. assets_extra: An optional dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. Defaults to `False`. exports_to_keep: Number of exports to keep. Older exports will be garbage-collected. Defaults to 5. Set to `None` to disable garbage collection. Raises: ValueError: if any arguments is invalid. """ self._saved_model_exporter = _SavedModelExporter(name, serving_input_receiver_fn, assets_extra, as_text) self._exports_to_keep = exports_to_keep if exports_to_keep is not None and exports_to_keep <= 0: raise ValueError( '`exports_to_keep`, if provided, must be positive number') @property def name(self): return self._saved_model_exporter.name def export(self, estimator, export_path, checkpoint_path, eval_result, is_the_final_export): export_result = self._saved_model_exporter.export(estimator, export_path, checkpoint_path, eval_result, is_the_final_export) self._garbage_collect_exports(export_path) return export_result def _garbage_collect_exports(self, export_dir_base): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. """ if self._exports_to_keep is None: return def _export_version_parser(path): # create a simple parser that pulls the export_version from the directory. filename = os.path.basename(path.path) if not (len(filename) == 10 and filename.isdigit()): return None return path._replace(export_version=int(filename)) # pylint: disable=protected-access keep_filter = gc._largest_export_versions(self._exports_to_keep) delete_filter = gc._negation(keep_filter) for p in delete_filter( gc._get_paths(export_dir_base, parser=_export_version_parser)): try: gfile.DeleteRecursively(io_util.fix_oss_dir(p.path)) except errors_impl.NotFoundError as e: tf_logging.warn('Can not delete %s recursively: %s', p.path, e) # pylint: enable=protected-access