easy_rec/python/input/batch_tfrecord_input.py (91 lines of code) (raw):
# -*- encoding:utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import logging
import tensorflow as tf
from easy_rec.python.input.input import Input
from easy_rec.python.utils.tf_utils import get_tf_type
if tf.__version__ >= '2.0':
tf = tf.compat.v1
class BatchTFRecordInput(Input):
"""BatchTFRecordInput use for batch read from tfrecord.
For example, there is a tfrecord which one feature(key)
correspond to n data(value).
batch_size needs to be a multiple of n.
"""
def __init__(self,
data_config,
feature_config,
input_path,
task_index=0,
task_num=1,
check_mode=False,
pipeline_config=None):
super(BatchTFRecordInput,
self).__init__(data_config, feature_config, input_path, task_index,
task_num, check_mode, pipeline_config)
assert data_config.HasField(
'n_data_batch_tfrecord'), 'Need to set n_data_batch_tfrecord in config.'
self._input_shapes = [x.input_shape for x in data_config.input_fields]
self.feature_desc = {}
for x, t, d, s in zip(self._input_fields, self._input_field_types,
self._input_field_defaults, self._input_shapes):
d = self.get_type_defaults(t, d)
t = get_tf_type(t)
self.feature_desc[x] = tf.io.FixedLenSequenceFeature(
dtype=t, shape=s, allow_missing=True)
def _parse_tfrecord(self, example):
try:
_, features, _ = tf.parse_sequence_example(
example, sequence_features=self.feature_desc)
except AttributeError:
_, features, _ = tf.io.parse_sequence_example(
example, sequence_features=self.feature_desc)
# Below code will reduce one dimension when the data dimension > 2.
features = dict(
(key,
tf.reshape(value, [
-1,
] + [x for i, x in enumerate(value.shape) if i not in (0, 1)])) for (
key, value) in features.items())
return features
def _build(self, mode, params):
if type(self._input_path) != list:
self._input_path = self._input_path.split(',')
file_paths = []
for x in self._input_path:
file_paths.extend(tf.gfile.Glob(x))
assert len(file_paths) > 0, 'match no files with %s' % self._input_path
num_parallel_calls = self._data_config.num_parallel_calls
data_compression_type = self._data_config.data_compression_type
if mode == tf.estimator.ModeKeys.TRAIN:
logging.info('train files[%d]: %s' %
(len(file_paths), ','.join(file_paths)))
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
if self._data_config.shuffle:
# shuffle input files
dataset = dataset.shuffle(len(file_paths))
# too many readers read the same file will cause performance issues
# as the same data will be read multiple times
parallel_num = min(num_parallel_calls, len(file_paths))
dataset = dataset.interleave(
lambda x: tf.data.TFRecordDataset(
x, compression_type=data_compression_type),
cycle_length=parallel_num,
num_parallel_calls=parallel_num)
dataset = dataset.shard(self._task_num, self._task_index)
if self._data_config.shuffle:
dataset = dataset.shuffle(
self._data_config.shuffle_buffer_size,
seed=2020,
reshuffle_each_iteration=True)
dataset = dataset.repeat(self.num_epochs)
else:
logging.info('eval files[%d]: %s' %
(len(file_paths), ','.join(file_paths)))
dataset = tf.data.TFRecordDataset(
file_paths, compression_type=data_compression_type)
dataset = dataset.repeat(1)
# We read n data from tfrecord one time.
cur_batch = self._data_config.batch_size // self._data_config.n_data_batch_tfrecord
cur_batch = max(1, cur_batch)
dataset = dataset.batch(cur_batch)
dataset = dataset.map(
self._parse_tfrecord, num_parallel_calls=num_parallel_calls)
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
dataset = dataset.map(
map_func=self._preprocess, num_parallel_calls=num_parallel_calls)
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
if mode != tf.estimator.ModeKeys.PREDICT:
dataset = dataset.map(lambda x:
(self._get_features(x), self._get_labels(x)))
else:
dataset = dataset.map(lambda x: (self._get_features(x)))
return dataset