easy_rec/python/layers/multihead_cross_attention.py (391 lines of code) (raw):
# -*- encoding:utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
from easy_rec.python.compat.layers import layer_norm as tf_layer_norm
from easy_rec.python.utils.activation import gelu
from easy_rec.python.utils.shape_utils import get_shape_list
if tf.__version__ >= '2.0':
tf = tf.compat.v1
def create_initializer(initializer_range=0.02):
"""Creates a `truncated_normal_initializer` with the given range."""
return tf.truncated_normal_initializer(stddev=initializer_range)
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
return output
def attention_layer(from_tensor,
to_tensor,
size_per_head,
num_attention_heads=1,
attention_mask=None,
query_act=None,
key_act=None,
value_act=None,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
do_return_2d_tensor=False,
batch_size=None,
from_seq_length=None,
to_seq_length=None,
reuse=None):
"""Performs multi-headed attention from `from_tensor` to `to_tensor`.
This is an implementation of multi-headed attention based on "Attention is all you Need".
If `from_tensor` and `to_tensor` are the same, then this is self-attention.
Each timestep in `from_tensor` attends to the corresponding sequence in `to_tensor`,
and returns a fixed-width vector.
This function first projects `from_tensor` into a "query" tensor and `to_tensor` into "key" and "value" tensors.
These are (effectively) a list of tensors of length `num_attention_heads`, where each tensor is of shape:
[batch_size, seq_length, size_per_head].
Then, the query and key tensors are dot-producted and scaled. These are
softmaxed to obtain attention probabilities. The value tensors are then
interpolated by these probabilities, then concatenated back to a single
tensor and returned.
In practice, the multi-headed attention are done with transposes and
reshapes rather than actual separate tensors.
Args:
from_tensor: float Tensor of shape [batch_size, from_seq_length,
from_width].
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
size_per_head: int. Size of each attention head.
num_attention_heads: int. Number of attention heads.
attention_mask: (optional) int32 Tensor of shape [batch_size,
from_seq_length, to_seq_length]. The values should be 1 or 0. The
attention scores will effectively be set to -infinity for any positions in
the mask that are 0, and will be unchanged for positions that are 1.
query_act: (optional) Activation function for the query transform.
key_act: (optional) Activation function for the key transform.
value_act: (optional) Activation function for the value transform.
attention_probs_dropout_prob: (optional) float. Dropout probability of the
attention probabilities.
initializer_range: float. Range of the weight initializer.
do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
* from_seq_length, num_attention_heads * size_per_head]. If False, the
output will be of shape [batch_size, from_seq_length, num_attention_heads
* size_per_head].
batch_size: (Optional) int. If the input is 2D, this might be the batch size
of the 3D version of the `from_tensor` and `to_tensor`.
from_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `from_tensor`.
to_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `to_tensor`.
reuse: whether to reuse this layer
Returns:
float Tensor of shape [batch_size, from_seq_length,
num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
true, this will be of shape [batch_size * from_seq_length,
num_attention_heads * size_per_head]).
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
seq_length, width):
output_tensor = tf.reshape(
input_tensor, [batch_size, seq_length, num_attention_heads, width])
output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
return output_tensor
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
if len(from_shape) != len(to_shape):
raise ValueError(
'The rank of `from_tensor` must match the rank of `to_tensor`.')
if len(from_shape) == 3:
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_seq_length = to_shape[1]
elif len(from_shape) == 2:
if (batch_size is None or from_seq_length is None or to_seq_length is None):
raise ValueError(
'When passing in rank 2 tensors to attention_layer, the values '
'for `batch_size`, `from_seq_length`, and `to_seq_length` '
'must all be specified.')
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# F = `from_tensor` sequence length
# T = `to_tensor` sequence length
# N = `num_attention_heads`
# H = `size_per_head`
from_tensor_2d = reshape_to_matrix(from_tensor)
to_tensor_2d = reshape_to_matrix(to_tensor)
# `query_layer` = [B*F, N*H]
query_layer = tf.layers.dense(
from_tensor_2d,
num_attention_heads * size_per_head,
activation=query_act,
name='query',
kernel_initializer=create_initializer(initializer_range),
reuse=reuse)
# `key_layer` = [B*T, N*H]
key_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=key_act,
name='key',
kernel_initializer=create_initializer(initializer_range),
reuse=reuse)
# `value_layer` = [B*T, N*H]
value_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=value_act,
name='value',
kernel_initializer=create_initializer(initializer_range),
reuse=reuse)
# `query_layer` = [B, N, F, H]
query_layer = transpose_for_scores(query_layer, batch_size,
num_attention_heads, from_seq_length,
size_per_head)
# `key_layer` = [B, N, T, H]
key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
to_seq_length, size_per_head)
# Take the dot product between "query" and "key" to get the raw
# attention scores.
# `attention_scores` = [B, N, F, T]
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(size_per_head)))
if attention_mask is not None:
# `attention_mask` = [B, 1, F, T]
attention_mask = tf.expand_dims(attention_mask, axis=[1])
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_scores += adder
# Normalize the attention scores to probabilities.
# `attention_probs` = [B, N, F, T]
attention_probs = tf.nn.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
# `value_layer` = [B, T, N, H]
value_layer = tf.reshape(
value_layer,
[batch_size, to_seq_length, num_attention_heads, size_per_head])
# `value_layer` = [B, N, T, H]
value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
# `context_layer` = [B, N, F, H]
context_layer = tf.matmul(attention_probs, value_layer)
# `context_layer` = [B, F, N, H]
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
if do_return_2d_tensor:
# `context_layer` = [B*F, N*H]
context_layer = tf.reshape(
context_layer,
[batch_size * from_seq_length, num_attention_heads * size_per_head])
else:
# `context_layer` = [B, F, N*H]
context_layer = tf.reshape(
context_layer,
[batch_size, from_seq_length, num_attention_heads * size_per_head])
return context_layer
def transformer_encoder(input_tensor,
attention_mask=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
intermediate_act_fn=gelu,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
reuse=None,
name='transformer'):
"""Multi-headed, multi-layer Transformer from "Attention is All You Need".
This is almost an exact implementation of the original Transformer encoder.
See the original paper:
https://arxiv.org/abs/1706.03762
Args:
input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
seq_length], with 1 for positions that can be attended to and 0 in
positions that should not be.
hidden_size: int. Hidden size of the Transformer.
num_hidden_layers: int. Number of layers (blocks) in the Transformer.
num_attention_heads: int. Number of attention heads in the Transformer.
intermediate_size: int. The size of the "intermediate" (a.k.a., feed
forward) layer.
intermediate_act_fn: function. The non-linear activation function to apply
to the output of the intermediate/feed-forward layer.
hidden_dropout_prob: float. Dropout probability for the hidden layers.
attention_probs_dropout_prob: float. Dropout probability of the attention
probabilities.
initializer_range: float. Range of the initializer (stddev of truncated
normal).
reuse: whether to reuse this encoder
name: scope name prefix
Returns:
float Tensor of shape [batch_size, seq_length, hidden_size], the final
hidden layer of the Transformer.
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention '
'heads (%d)' % (hidden_size, num_attention_heads))
attention_head_size = int(hidden_size / num_attention_heads)
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
input_width = input_shape[2]
# The Transformer performs sum residuals on all layers so the input needs
# to be the same as the hidden size.
if input_width != hidden_size:
raise ValueError('The width of the input tensor (%d) != hidden size (%d)' %
(input_width, hidden_size))
# We keep the representation as a 2D tensor to avoid re-shaping it back and
# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
# the GPU/CPU but may not be free on the TPU, so we want to minimize them to
# help the optimizer.
prev_output = reshape_to_matrix(input_tensor)
for layer_idx in range(num_hidden_layers):
with tf.variable_scope('%s_layer_%d' % (name, layer_idx)):
layer_input = prev_output
with tf.variable_scope('attention'):
with tf.variable_scope('self'):
# [batch_size * from_seq_length, num_attention_heads * size_per_head]
attention_output = attention_layer(
from_tensor=layer_input,
to_tensor=layer_input,
size_per_head=attention_head_size,
num_attention_heads=num_attention_heads,
attention_mask=attention_mask,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
do_return_2d_tensor=True,
batch_size=batch_size,
from_seq_length=seq_length,
to_seq_length=seq_length,
reuse=reuse)
# Run a linear projection of `hidden_size` then add a residual
# with `layer_input`.
with tf.variable_scope('output', reuse=reuse):
attention_output = tf.layers.dense(
attention_output,
hidden_size,
kernel_initializer=create_initializer(initializer_range))
attention_output = dropout(attention_output, hidden_dropout_prob)
attention_output = layer_norm(attention_output + layer_input)
# The activation is only applied to the "intermediate" hidden layer.
with tf.variable_scope('intermediate', reuse=reuse):
intermediate_output = tf.layers.dense(
attention_output,
intermediate_size,
activation=intermediate_act_fn,
kernel_initializer=create_initializer(initializer_range))
# Down-project back to `hidden_size` then add the residual.
with tf.variable_scope('output', reuse=reuse):
layer_output = tf.layers.dense(
intermediate_output,
hidden_size,
kernel_initializer=create_initializer(initializer_range))
layer_output = dropout(layer_output, hidden_dropout_prob)
layer_output = layer_norm(layer_output + attention_output)
prev_output = layer_output
final_output = reshape_from_matrix(prev_output, input_shape)
return final_output
def cross_attention_block(from_tensor,
to_tensor,
layer_idx,
size_per_head,
cross_attention_mask=None,
self_attention_mask=None,
num_attention_heads=1,
intermediate_size=512,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
name=''):
"""Multi-headed cross attention block.
Args:
from_tensor: float Tensor of shape [batch_size, from_seq_length,
from_width].
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
layer_idx: int. layer id in the Transformer.
size_per_head: int. Size of each attention head.
cross_attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length,
to_seq_length], with 1 for positions that can be attended to and 0 in
positions that should not be.
self_attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length,
from_seq_length], with 1 for positions that can be attended to and 0 in
positions that should not be.
num_attention_heads: int. Number of attention heads in the Transformer.
intermediate_size: int. The size of the "intermediate" (a.k.a., feed
forward) layer.
hidden_dropout_prob: float. Dropout probability for the hidden layers.
attention_probs_dropout_prob: float. Dropout probability of the attention
probabilities.
initializer_range: float. Range of the initializer (stddev of truncated
normal).
name: scope name prefix
Returns:
float Tensor of shape [batch_size, seq_length, hidden_size], the final
hidden layer of the Transformer.
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
input_shape = get_shape_list(from_tensor, expected_rank=3)
batch_size = input_shape[0]
from_seq_length = input_shape[1]
input_shape = get_shape_list(to_tensor, expected_rank=3)
to_seq_length = input_shape[1]
with tf.variable_scope('%scross_layer_%d' % (name, layer_idx)):
with tf.variable_scope('attention'):
with tf.variable_scope('cross'):
# [batch_size * from_seq_length, num_attention_heads * size_per_head]
cross_attention_output = attention_layer(
from_tensor=from_tensor,
to_tensor=to_tensor,
size_per_head=size_per_head,
num_attention_heads=num_attention_heads,
attention_mask=cross_attention_mask,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
do_return_2d_tensor=True,
batch_size=batch_size,
from_seq_length=from_seq_length,
to_seq_length=to_seq_length)
with tf.variable_scope('self'):
# [batch_size * from_seq_length, num_attention_heads * size_per_head]
self_attention_output = attention_layer(
from_tensor=cross_attention_output,
to_tensor=cross_attention_output,
size_per_head=size_per_head,
num_attention_heads=num_attention_heads,
attention_mask=self_attention_mask,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
do_return_2d_tensor=True,
batch_size=batch_size,
from_seq_length=from_seq_length,
to_seq_length=from_seq_length)
with tf.variable_scope('output'):
attention_output = dropout(self_attention_output, hidden_dropout_prob)
attention_output = layer_norm(attention_output + cross_attention_output)
# The activation is only applied to the "intermediate" hidden layer.
with tf.variable_scope('intermediate'):
intermediate_output = tf.layers.dense(
attention_output,
intermediate_size,
activation=tf.nn.relu,
kernel_initializer=create_initializer(initializer_range))
# Down-project back to `hidden_size` then add the residual.
with tf.variable_scope('output'):
layer_output = tf.layers.dense(
intermediate_output,
num_attention_heads * size_per_head,
kernel_initializer=create_initializer(initializer_range))
layer_output = dropout(layer_output, hidden_dropout_prob)
# [batch_size * from_seq_length, num_attention_heads * size_per_head]
layer_output = layer_norm(layer_output + attention_output)
final_output = reshape_from_matrix(
layer_output,
[batch_size, from_seq_length, num_attention_heads * size_per_head])
return final_output # [batch_size, from_seq_length, num_attention_heads * size_per_head]
def cross_attention_tower(left_tensor,
right_tensor,
num_hidden_layers=1,
num_attention_heads=12,
left_size_per_head=64,
right_size_per_head=64,
left_intermediate_size=0,
right_intermediate_size=0,
left_input_mask=None,
right_input_mask=None,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
name=''):
"""Multi-headed, multi layer cross attention block.
Args:
left_tensor: float Tensor of shape [batch_size, left_seq_length,
from_width].
right_tensor: float Tensor of shape [batch_size, right_seq_length, to_width].
num_hidden_layers: int. Number of layers (blocks) in the Transformer.
num_attention_heads: int. Number of attention heads in the Transformer.
left_size_per_head: int. Size of each attention head of left tower.
right_size_per_head: int. Size of each attention head of right tower.
left intermediate_size: int. The size of the "intermediate" (a.k.a., feed
forward) layer of left tower. Less or equal to 0 means `num_attention_heads
* left_size_per_head`
right intermediate_size: int. The size of the "intermediate" (a.k.a., feed
forward) layer of right tower. Less or equal to 0 means `num_attention_heads
* right_size_per_head`
left_input_mask: the mask for `left_tensor`
right_input_mask: the mask for `right_tensor`
hidden_dropout_prob: float. Dropout probability for the hidden layers.
attention_probs_dropout_prob: float. Dropout probability of the attention
probabilities.
initializer_range: float. Range of the initializer (stddev of truncated
normal).
name: scope name prefix
Returns:
tuple of float Tensors of shape ([batch_size, left_seq_length, hidden_size],
[batch_size, right_seq_length, hidden_size]),
where hidden_size = num_attention_heads * size_per_head
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
if left_intermediate_size <= 0:
left_intermediate_size = num_attention_heads * left_size_per_head
if right_intermediate_size <= 0:
right_intermediate_size = num_attention_heads * right_size_per_head
left_attention_mask = None
if left_input_mask is not None:
left_attention_mask = create_attention_mask_from_input_mask(
left_tensor, left_attention_mask)
left_2_right_attention_mask = None
if right_input_mask is not None:
left_2_right_attention_mask = create_attention_mask_from_input_mask(
left_tensor, right_input_mask)
right_attention_mask = None
if right_input_mask is not None:
right_attention_mask = create_attention_mask_from_input_mask(
right_tensor, right_input_mask)
right_2_left_attention_mask = None
if left_input_mask is not None:
right_2_left_attention_mask = create_attention_mask_from_input_mask(
right_tensor, left_input_mask)
prev_left_output = left_tensor
prev_right_output = right_tensor
for layer_idx in range(num_hidden_layers):
left_output = cross_attention_block(
prev_left_output,
prev_right_output,
layer_idx,
num_attention_heads=num_attention_heads,
size_per_head=left_size_per_head,
intermediate_size=left_intermediate_size,
hidden_dropout_prob=hidden_dropout_prob,
cross_attention_mask=left_2_right_attention_mask,
self_attention_mask=left_attention_mask,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
name='%sleft_to_right_' % name)
right_output = cross_attention_block(
prev_right_output,
prev_left_output,
layer_idx,
num_attention_heads=num_attention_heads,
size_per_head=right_size_per_head,
intermediate_size=right_intermediate_size,
hidden_dropout_prob=hidden_dropout_prob,
cross_attention_mask=right_2_left_attention_mask,
self_attention_mask=right_attention_mask,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
name='%sright_to_left_' % name)
prev_left_output = left_output
prev_right_output = right_output
return prev_left_output, prev_right_output
def layer_norm(input_tensor, name=None):
"""Run layer normalization on the last dimension of the tensor."""
return tf_layer_norm(
inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
def reshape_to_matrix(input_tensor):
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError('Input tensor must have at least rank 2. Shape = %s' %
(input_tensor.shape))
if ndims == 2:
return input_tensor
width = input_tensor.shape[-1]
output_tensor = tf.reshape(input_tensor, [-1, width])
return output_tensor
def reshape_from_matrix(output_tensor, orig_shape_list):
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
if len(orig_shape_list) == 2:
return output_tensor
output_shape = get_shape_list(output_tensor)
orig_dims = orig_shape_list[0:-1]
width = output_shape[-1]
return tf.reshape(output_tensor, orig_dims + [width])
def create_attention_mask_from_input_mask(from_tensor, to_mask):
"""Create 3D attention mask from a 2D tensor mask.
Args:
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
Returns:
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
"""
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_shape = get_shape_list(to_mask, expected_rank=2)
to_seq_length = to_shape[1]
to_mask = tf.cast(
tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
# We don't assume that `from_tensor` is a mask (although it could be). We
# don't actually care if we attend *from* padding tokens (only *to* padding)
# tokens so we create a tensor of all ones.
#
# `broadcast_ones` = [batch_size, from_seq_length, 1]
broadcast_ones = tf.ones(
shape=tf.stack([batch_size, from_seq_length, 1]), dtype=tf.float32)
# Here we broadcast along two dimensions to create the mask.
mask = broadcast_ones * to_mask
return mask
def embedding_postprocessor(input_tensor,
use_token_type=False,
token_type_ids=None,
token_type_vocab_size=16,
token_type_embedding_name='token_type_embeddings',
reuse_token_type=None,
use_position_embeddings=True,
position_embedding_name='position_embeddings',
reuse_position_embedding=None,
initializer_range=0.02,
max_position_embeddings=512,
dropout_prob=0.1):
"""Performs various post-processing on a word embedding tensor.
Args:
input_tensor: float Tensor of shape [batch_size, seq_length,
embedding_size].
use_token_type: bool. Whether to add embeddings for `token_type_ids`.
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
Must be specified if `use_token_type` is True.
token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
token_type_embedding_name: string. The name of the embedding table variable
for token type ids.
reuse_token_type: bool. Whether to reuse token type embedding variable.
use_position_embeddings: bool. Whether to add position embeddings for the
position of each token in the sequence.
position_embedding_name: string. The name of the embedding table variable
for positional embeddings.
reuse_position_embedding: bool. Whether to reuse position embedding variable.
initializer_range: float. Range of the weight initialization.
max_position_embeddings: int. Maximum sequence length that might ever be
used with this model. This can be longer than the sequence length of
input_tensor, but cannot be shorter.
dropout_prob: float. Dropout probability applied to the final output tensor.
Returns:
float tensor with same shape as `input_tensor`.
Raises:
ValueError: One of the tensor shapes or input values is invalid.
"""
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
width = input_shape[2]
output = input_tensor
if use_token_type:
if token_type_ids is None:
raise ValueError('`token_type_ids` must be specified if'
'`use_token_type` is True.')
with tf.variable_scope('token_type', reuse=reuse_token_type):
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary.
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if use_position_embeddings:
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
with tf.variable_scope(
'position_embedding', reuse=reuse_position_embedding):
full_position_embeddings = tf.get_variable(
name=position_embedding_name,
shape=[max_position_embeddings, width],
initializer=create_initializer(initializer_range))
# Since the position embedding table is a learned variable, we create it
# using a (long) sequence length `max_position_embeddings`. The actual
# sequence length might be shorter than this, for faster training of
# tasks that do not have long sequences.
#
# So `full_position_embeddings` is effectively an embedding table
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
# perform a slice.
position_embeddings = tf.slice(full_position_embeddings, [0, 0],
[seq_length, -1])
num_dims = len(output.shape.as_list())
# Only the last two dimensions are relevant (`seq_length` and `width`), so
# we broadcast among the first dimensions, which is typically just
# the batch size.
position_broadcast_shape = []
for _ in range(num_dims - 2):
position_broadcast_shape.append(1)
position_broadcast_shape.extend([seq_length, width])
position_embeddings = tf.reshape(position_embeddings,
position_broadcast_shape)
output += position_embeddings
output = layer_norm_and_dropout(output, dropout_prob)
return output
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
"""Runs layer normalization followed by dropout."""
output_tensor = layer_norm(input_tensor, name)
output_tensor = dropout(output_tensor, dropout_prob)
return output_tensor