easy_rec/python/loss/multi_similarity.py (46 lines of code) (raw):

# Copyright (c) Alibaba, Inc. and its affiliates. import tensorflow as tf from easy_rec.python.loss.circle_loss import get_anchor_positive_triplet_mask from easy_rec.python.utils.shape_utils import get_shape_list if tf.__version__ >= '2.0': tf = tf.compat.v1 def ms_loss(embeddings, labels, session_ids=None, alpha=2.0, beta=50.0, lamb=1.0, eps=0.1, ms_mining=False, embed_normed=False): """Refer paper: Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning. ref: http://openaccess.thecvf.com/content_CVPR_2019/papers/ Wang_Multi-Similarity_Loss_With_General_Pair_Weighting_for_Deep_Metric_Learning_CVPR_2019_paper.pdf """ # make sure embedding should be l2-normalized if not embed_normed: embeddings = tf.nn.l2_normalize(embeddings, axis=1) labels = tf.reshape(labels, [-1, 1]) embed_shape = get_shape_list(embeddings) batch_size = embed_shape[0] mask_pos = get_anchor_positive_triplet_mask(labels, session_ids) mask_neg = 1 - mask_pos - tf.eye(batch_size) sim_mat = tf.matmul( embeddings, embeddings, transpose_a=False, transpose_b=True) sim_mat = tf.maximum(sim_mat, 0.0) pos_mat = tf.multiply(sim_mat, mask_pos) neg_mat = tf.multiply(sim_mat, mask_neg) if ms_mining: max_val = tf.reduce_max(neg_mat, axis=1, keepdims=True) tmp_max_val = tf.reduce_max(pos_mat, axis=1, keepdims=True) min_val = tf.reduce_min( tf.multiply(sim_mat - tmp_max_val, mask_pos), axis=1, keepdims=True) + tmp_max_val max_val = tf.tile(max_val, [1, batch_size]) min_val = tf.tile(min_val, [1, batch_size]) mask_pos = tf.where(pos_mat < max_val + eps, mask_pos, tf.zeros_like(mask_pos)) mask_neg = tf.where(neg_mat > min_val - eps, mask_neg, tf.zeros_like(mask_neg)) pos_exp = tf.exp(-alpha * (pos_mat - lamb)) pos_exp = tf.where(mask_pos > 0.0, pos_exp, tf.zeros_like(pos_exp)) neg_exp = tf.exp(beta * (neg_mat - lamb)) neg_exp = tf.where(mask_neg > 0.0, neg_exp, tf.zeros_like(neg_exp)) pos_term = tf.log(1.0 + tf.reduce_sum(pos_exp, axis=1)) / alpha neg_term = tf.log(1.0 + tf.reduce_sum(neg_exp, axis=1)) / beta loss = tf.reduce_mean(pos_term + neg_term) return loss