easy_rec/python/model/dat.py (110 lines of code) (raw):
# -*- encoding:utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import tensorflow as tf
from easy_rec.python.layers import dnn
from easy_rec.python.model.match_model import MatchModel
from easy_rec.python.protos.dat_pb2 import DAT as DATConfig
from easy_rec.python.protos.loss_pb2 import LossType
from easy_rec.python.utils.proto_util import copy_obj
if tf.__version__ >= '2.0':
tf = tf.compat.v1
class DAT(MatchModel):
"""Dual Augmented Two-tower Model."""
def __init__(self,
model_config,
feature_configs,
features,
labels=None,
is_training=False):
super(DAT, self).__init__(model_config, feature_configs, features, labels,
is_training)
assert self._model_config.WhichOneof('model') == 'dat', \
'invalid model config: %s' % self._model_config.WhichOneof('model')
feature_group_names = [
fg.group_name for fg in self._model_config.feature_groups
]
assert 'user' in feature_group_names, 'user feature group not found'
assert 'item' in feature_group_names, 'item feature group not found'
assert 'user_id_augment' in feature_group_names, 'user_id_augment feature group not found'
assert 'item_id_augment' in feature_group_names, 'item_id_augment feature group not found'
self._model_config = self._model_config.dat
assert isinstance(self._model_config, DATConfig)
self.user_tower = copy_obj(self._model_config.user_tower)
self.user_deep_feature, _ = self._input_layer(self._feature_dict, 'user')
self.user_augmented_vec, _ = self._input_layer(self._feature_dict,
'user_id_augment')
self.item_tower = copy_obj(self._model_config.item_tower)
self.item_deep_feature, _ = self._input_layer(self._feature_dict, 'item')
self.item_augmented_vec, _ = self._input_layer(self._feature_dict,
'item_id_augment')
self._user_tower_emb = None
self._item_tower_emb = None
def build_predict_graph(self):
num_user_dnn_layer = len(self.user_tower.dnn.hidden_units)
last_user_hidden = self.user_tower.dnn.hidden_units.pop()
user_dnn = dnn.DNN(self.user_tower.dnn, self._l2_reg, 'user_dnn',
self._is_training)
user_tower_feature = tf.concat(
[self.user_deep_feature, self.user_augmented_vec], axis=-1)
user_tower_emb = user_dnn(user_tower_feature)
user_tower_emb = tf.layers.dense(
inputs=user_tower_emb,
units=last_user_hidden,
kernel_regularizer=self._l2_reg,
name='user_dnn/dnn_%d' % (num_user_dnn_layer - 1))
num_item_dnn_layer = len(self.item_tower.dnn.hidden_units)
last_item_hidden = self.item_tower.dnn.hidden_units.pop()
item_dnn = dnn.DNN(self.item_tower.dnn, self._l2_reg, 'item_dnn',
self._is_training)
item_tower_feature = tf.concat(
[self.item_deep_feature, self.item_augmented_vec], axis=-1)
item_tower_emb = item_dnn(item_tower_feature)
item_tower_emb = tf.layers.dense(
inputs=item_tower_emb,
units=last_item_hidden,
kernel_regularizer=self._l2_reg,
name='item_dnn/dnn_%d' % (num_item_dnn_layer - 1))
user_tower_emb = self.norm(user_tower_emb)
item_tower_emb = self.norm(item_tower_emb)
temperature = self._model_config.temperature
y_pred = self.sim(user_tower_emb, item_tower_emb) / temperature
if self._is_point_wise:
raise ValueError('Currently DAT model only supports list wise mode.')
if self._loss_type == LossType.CLASSIFICATION:
raise ValueError(
'Currently DAT model only supports SOFTMAX_CROSS_ENTROPY loss.')
elif self._loss_type == LossType.SOFTMAX_CROSS_ENTROPY:
y_pred = self._mask_in_batch(y_pred)
self._prediction_dict['logits'] = y_pred
self._prediction_dict['probs'] = tf.nn.softmax(y_pred)
else:
self._prediction_dict['y'] = y_pred
self._prediction_dict['user_tower_emb'] = user_tower_emb
self._prediction_dict['item_tower_emb'] = item_tower_emb
self._prediction_dict['user_emb'] = tf.reduce_join(
tf.as_string(user_tower_emb), axis=-1, separator=',')
self._prediction_dict['item_emb'] = tf.reduce_join(
tf.as_string(item_tower_emb), axis=-1, separator=',')
augmented_p_u = tf.stop_gradient(user_tower_emb)
augmented_p_i = tf.stop_gradient(item_tower_emb)
self._prediction_dict['augmented_p_u'] = augmented_p_u
self._prediction_dict['augmented_p_i'] = augmented_p_i
self._prediction_dict['augmented_a_u'] = self.user_augmented_vec
self._prediction_dict['augmented_a_i'] = self.item_augmented_vec
return self._prediction_dict
def get_outputs(self):
if self._loss_type == LossType.CLASSIFICATION:
raise ValueError(
'Currently DAT model only supports SOFTMAX_CROSS_ENTROPY loss.')
elif self._loss_type == LossType.SOFTMAX_CROSS_ENTROPY:
self._prediction_dict['logits'] = tf.squeeze(
self._prediction_dict['logits'], axis=-1)
self._prediction_dict['probs'] = tf.nn.sigmoid(
self._prediction_dict['logits'])
return [
'logits', 'probs', 'user_emb', 'item_emb', 'user_tower_emb',
'item_tower_emb', 'augmented_p_u', 'augmented_p_i', 'augmented_a_u',
'augmented_a_i'
]
else:
raise ValueError('invalid loss type: %s' % str(self._loss_type))
def build_output_dict(self):
output_dict = super(DAT, self).build_output_dict()
return output_dict