easy_rec/python/model/dummy_model.py (36 lines of code) (raw):
# -*- encoding:utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import tensorflow as tf
from easy_rec.python.model.easy_rec_model import EasyRecModel
class DummyModel(EasyRecModel):
def __init__(self,
model_config,
feature_configs,
features,
labels=None,
is_training=False):
super(DummyModel, self).__init__(model_config, feature_configs, features,
labels, is_training)
if self._labels is not None:
self._labels = list(self._labels.values())
if self._labels[0].dtype != tf.float32:
self._labels[0] = tf.ones_like(self._labels[0], tf.float32)
def build_predict_graph(self):
input_data = tf.random_uniform(tf.shape(self._labels[0]), dtype=tf.float32)
input_data = tf.reshape(input_data, [-1, 1])
output = tf.layers.dense(inputs=input_data, units=1, name='layer_0')
self._prediction_dict['output'] = output
for key in self._feature_dict:
val = self._feature_dict[key]
if isinstance(val, tf.sparse.SparseTensor):
val = val.values
self._prediction_dict[key] = val
return self._prediction_dict
def build_loss_graph(self):
return {
'cross_ent':
tf.reduce_sum(
tf.square(self._prediction_dict['output'] - self._labels[0]))
}
def get_outputs(self):
return ['output']
def build_metric_graph(self):
return {}