easy_rec/python/model/fm.py (46 lines of code) (raw):

# -*- encoding:utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. from __future__ import print_function import tensorflow as tf from easy_rec.python.layers import fm from easy_rec.python.model.rank_model import RankModel from easy_rec.python.protos.fm_pb2 import FM as FMConfig if tf.__version__ >= '2.0': tf = tf.compat.v1 class FM(RankModel): def __init__(self, model_config, feature_configs, features, labels=None, is_training=False): super(FM, self).__init__(model_config, feature_configs, features, labels, is_training) assert self._model_config.WhichOneof('model') == 'fm', \ 'invalid model config: %s' % self._model_config.WhichOneof('model') self._model_config = self._model_config.fm assert isinstance(self._model_config, FMConfig) self._wide_features, _ = self._input_layer(self._feature_dict, 'wide') self._deep_features, self._fm_features = self._input_layer( self._feature_dict, 'deep') def build_input_layer(self, model_config, feature_configs): # overwrite create input_layer to support wide_output_dim self._wide_output_dim = model_config.num_class super(FM, self).build_input_layer(model_config, feature_configs) def build_predict_graph(self): wide_fea = tf.reduce_sum( self._wide_features, axis=1, keepdims=True, name='wide_feature') fm_fea = fm.FM(name='fm_feature')(self._fm_features) if self._num_class > 1: fm_fea = tf.layers.dense( fm_fea, self._num_class, kernel_regularizer=self._l2_reg, name='fm_logits') else: fm_fea = tf.reduce_sum(fm_fea, 1, keepdims=True) bias = tf.get_variable( 'fm_bias', [self._num_class], initializer=tf.zeros_initializer(), trainable=True) output = wide_fea + fm_fea output = tf.nn.bias_add(output, bias) self._add_to_prediction_dict(output) return self._prediction_dict