coordinator/gscoordinator/op_executor.py (875 lines of code) (raw):

import datetime import itertools import json import logging import os import pickle import random import sys import time import traceback import zipfile from concurrent import futures from io import BytesIO import grpc from graphscope.framework import utils from graphscope.framework.dag_utils import create_graph from graphscope.framework.dag_utils import create_loader from graphscope.framework.errors import AnalyticalEngineInternalError from graphscope.framework.graph_utils import normalize_parameter_edges from graphscope.framework.graph_utils import normalize_parameter_vertices from graphscope.framework.loader import Loader from graphscope.framework.utils import find_java_exe from graphscope.framework.utils import get_tempdir from graphscope.framework.utils import normalize_data_type_str from graphscope.proto import attr_value_pb2 from graphscope.proto import engine_service_pb2_grpc from graphscope.proto import graph_def_pb2 from graphscope.proto import message_pb2 from graphscope.proto import op_def_pb2 from graphscope.proto import types_pb2 from graphscope.proto.error.coordinator_pb2 import OK from gscoordinator.launcher import AbstractLauncher from gscoordinator.monitor import Monitor from gscoordinator.object_manager import GraphMeta from gscoordinator.object_manager import LibMeta from gscoordinator.utils import ANALYTICAL_BUILTIN_SPACE from gscoordinator.utils import ANALYTICAL_ENGINE_JAVA_INIT_CLASS_PATH from gscoordinator.utils import ANALYTICAL_ENGINE_JAVA_JVM_OPTS from gscoordinator.utils import GS_GRPC_MAX_MESSAGE_LENGTH from gscoordinator.utils import INTERACTIVE_ENGINE_THREADS_PER_WORKER from gscoordinator.utils import RESOURCE_DIR_NAME from gscoordinator.utils import WORKSPACE from gscoordinator.utils import compile_app from gscoordinator.utils import compile_graph_frame from gscoordinator.utils import create_single_op_dag from gscoordinator.utils import dump_string from gscoordinator.utils import get_app_sha256 from gscoordinator.utils import get_graph_sha256 from gscoordinator.utils import get_lib_path from gscoordinator.utils import op_pre_process from gscoordinator.utils import to_interactive_engine_schema logger = logging.getLogger("graphscope") class OperationExecutor: def __init__(self, session_id: str, launcher: AbstractLauncher, object_manager): self._session_id = session_id self._launcher = launcher self._object_manager = object_manager self._key_to_op = {} # dict of op_def_pb2.OpResult self._op_result_pool = {} # Analytical engine attributes # ============================ self._analytical_grpc_stub = None # java class path should contain # 1) java runtime path # 2) uploaded resources, the recent uploaded resource will be placed first. self._java_class_path = ANALYTICAL_ENGINE_JAVA_INIT_CLASS_PATH self._jvm_opts = ANALYTICAL_ENGINE_JAVA_JVM_OPTS # runtime workspace, consisting of some libraries, logs, etc. self._builtin_workspace = os.path.join(WORKSPACE, "builtin") # udf app workspace and resource directory should be bound to a specific session when client connect. self._udf_app_workspace = os.path.join( WORKSPACE, launcher.instance_id, session_id ) self._resource_dir = os.path.join( WORKSPACE, launcher.instance_id, session_id, RESOURCE_DIR_NAME ) def run_step(self, dag_def, dag_bodies): def _generate_runstep_request(session_id, dag_def, dag_bodies): runstep_requests = [ message_pb2.RunStepRequest( head=message_pb2.RunStepRequestHead( session_id=session_id, dag_def=dag_def ) ) ] # head runstep_requests.extend(dag_bodies) for item in runstep_requests: yield item requests = _generate_runstep_request(self._session_id, dag_def, dag_bodies) # response response_head, response_bodies = None, [] try: responses = self.analytical_grpc_stub.RunStep(requests) for response in responses: if response.HasField("head"): response_head = response else: response_bodies.append(response) return response_head, response_bodies except grpc.RpcError as e: if e.code() == grpc.StatusCode.INTERNAL: # TODO: make the stacktrace separated from normal error messages # Too verbose. if len(e.details()) > 3072: # 3k bytes msg = f"{e.details()[:1024]} ... [truncated]" else: msg = e.details() raise AnalyticalEngineInternalError(msg) else: raise def pre_process(self, dag_def, dag_bodies, loader_op_bodies): for op in dag_def.op: self._key_to_op[op.key] = op op_pre_process( op, self._op_result_pool, self._key_to_op, engine_hosts=self._launcher.hosts, engine_java_class_path=self._java_class_path, # may be needed in CREATE_GRAPH or RUN_APP engine_jvm_opts=self._jvm_opts, ) # Handle op that depends on loader (data source) if op.op in [ types_pb2.CREATE_GRAPH, types_pb2.CONSOLIDATE_COLUMNS, types_pb2.ADD_LABELS, ]: for key_of_parent_op in op.parents: parent_op = self._key_to_op[key_of_parent_op] if parent_op.op == types_pb2.DATA_SOURCE: # handle bodies of loader op if parent_op.key in loader_op_bodies: dag_bodies.extend(loader_op_bodies[parent_op.key]) # Compile app or not. if op.op == types_pb2.BIND_APP: op, _, _ = self._maybe_compile_app(op) # Compile graph or not # arrow property graph and project graph need to compile # If engine crashed, we will get a SocketClosed grpc Exception. # In that case, we should notify client the engine is dead. if ( ( op.op == types_pb2.CREATE_GRAPH and op.attr[types_pb2.GRAPH_TYPE].i == graph_def_pb2.ARROW_PROPERTY ) or op.op == types_pb2.TRANSFORM_GRAPH or op.op == types_pb2.PROJECT_TO_SIMPLE or op.op == types_pb2.CONSOLIDATE_COLUMNS or op.op == types_pb2.ADD_LABELS or op.op == types_pb2.ARCHIVE_GRAPH ): op = self._maybe_register_graph(op) return dag_def, dag_bodies @Monitor.runOnAnalyticalEngine def run_on_analytical_engine( self, dag_def, dag_bodies, loader_op_bodies ): # noqa: C901 # preprocess of op before run on analytical engine dag_def, dag_bodies = self.pre_process(dag_def, dag_bodies, loader_op_bodies) # generate runstep requests, and run on analytical engine response_head, response_bodies = self.run_step(dag_def, dag_bodies) response_head, response_bodies = self.post_process( response_head, response_bodies ) return response_head, response_bodies def post_process(self, response_head, response_bodies): # handle result from response stream if response_head is None: raise AnalyticalEngineInternalError( "Missing head from the response stream." ) for op_result in response_head.head.results: # record result in coordinator, which doesn't contain large data self._op_result_pool[op_result.key] = op_result # get the op corresponding to the result op = self._key_to_op[op_result.key] # register graph and dump graph schema if op.op in ( types_pb2.CREATE_GRAPH, types_pb2.PROJECT_GRAPH, types_pb2.CONSOLIDATE_COLUMNS, types_pb2.PROJECT_TO_SIMPLE, types_pb2.TRANSFORM_GRAPH, types_pb2.ADD_LABELS, types_pb2.ADD_COLUMN, ): schema_path = os.path.join( get_tempdir(), op_result.graph_def.key + ".json" ) vy_info = graph_def_pb2.VineyardInfoPb() op_result.graph_def.extension.Unpack(vy_info) self._object_manager.put( op_result.graph_def.key, GraphMeta( op_result.graph_def.key, vy_info.vineyard_id, op_result.graph_def, schema_path, ), ) if op_result.graph_def.graph_type == graph_def_pb2.ARROW_PROPERTY: dump_string( to_interactive_engine_schema(vy_info.property_schema_json), schema_path, ) vy_info.schema_path = schema_path op_result.graph_def.extension.Pack(vy_info) # register app elif op.op == types_pb2.BIND_APP: _, app_sig, app_lib_path = self._maybe_compile_app(op) self._object_manager.put( app_sig, LibMeta( op_result.result.decode("utf-8", errors="ignore"), "app", app_lib_path, ), ) # unregister graph elif op.op == types_pb2.UNLOAD_GRAPH: self._object_manager.pop(op.attr[types_pb2.GRAPH_NAME].s.decode()) # unregister app elif op.op == types_pb2.UNLOAD_APP: self._object_manager.pop(op.attr[types_pb2.APP_NAME].s.decode()) return response_head, response_bodies # Analytical engine related operations # ==================================== def _maybe_compile_app(self, op): app_sig = get_app_sha256(op.attr, self._java_class_path) # try to get compiled file from GRAPHSCOPE_HOME/precompiled app_lib_path = get_lib_path( os.path.join(ANALYTICAL_BUILTIN_SPACE, app_sig), app_sig ) if not os.path.isfile(app_lib_path): algo_name = op.attr[types_pb2.APP_ALGO].s.decode("utf-8", errors="ignore") if ( types_pb2.GAR in op.attr or algo_name.startswith("giraph:") or algo_name.startswith("java_pie:") ): space = self._udf_app_workspace else: space = self._builtin_workspace # try to get compiled file from workspace app_lib_path = get_lib_path(os.path.join(space, app_sig), app_sig) if not os.path.isfile(app_lib_path): # compile and distribute compiled_path = self._compile_lib_and_distribute( compile_app, app_sig, op, self._java_class_path, ) if app_lib_path != compiled_path: msg = f"Computed app library path != compiled path, {app_lib_path} versus {compiled_path}" raise RuntimeError(msg) op.attr[types_pb2.APP_LIBRARY_PATH].CopyFrom( attr_value_pb2.AttrValue(s=app_lib_path.encode("utf-8", errors="ignore")) ) return op, app_sig, app_lib_path def _maybe_register_graph(self, op): graph_sig = get_graph_sha256(op.attr) # try to get compiled file from GRAPHSCOPE_HOME/precompiled/builtin graph_lib_path = get_lib_path( os.path.join(ANALYTICAL_BUILTIN_SPACE, graph_sig), graph_sig ) if not os.path.isfile(graph_lib_path): space = self._builtin_workspace # try to get compiled file from workspace graph_lib_path = get_lib_path(os.path.join(space, graph_sig), graph_sig) if not os.path.isfile(graph_lib_path): # compile and distribute compiled_path = self._compile_lib_and_distribute( compile_graph_frame, graph_sig, op, ) if graph_lib_path != compiled_path: raise RuntimeError( f"Computed graph library path not equal to compiled path, {graph_lib_path} versus {compiled_path}" ) if graph_sig not in self._object_manager: dag_def = create_single_op_dag( types_pb2.REGISTER_GRAPH_TYPE, config={ types_pb2.GRAPH_LIBRARY_PATH: attr_value_pb2.AttrValue( s=graph_lib_path.encode("utf-8", errors="ignore") ), types_pb2.TYPE_SIGNATURE: attr_value_pb2.AttrValue( s=graph_sig.encode("utf-8", errors="ignore") ), types_pb2.GRAPH_TYPE: attr_value_pb2.AttrValue( i=op.attr[types_pb2.GRAPH_TYPE].i ), }, ) try: response_head, _ = self.run_on_analytical_engine(dag_def, [], {}) except grpc.RpcError as e: logger.error( "Register graph failed, code: %s, details: %s", e.code().name, e.details(), ) if e.code() == grpc.StatusCode.INTERNAL: raise AnalyticalEngineInternalError(e.details()) else: raise self._object_manager.put( graph_sig, LibMeta( response_head.head.results[0].result, "graph_frame", graph_lib_path, ), ) op.attr[types_pb2.TYPE_SIGNATURE].CopyFrom( attr_value_pb2.AttrValue(s=graph_sig.encode("utf-8", errors="ignore")) ) return op def _create_analytical_grpc_stub(self): options = [ ("grpc.max_send_message_length", GS_GRPC_MAX_MESSAGE_LENGTH), ("grpc.max_receive_message_length", GS_GRPC_MAX_MESSAGE_LENGTH), ("grpc.max_metadata_size", GS_GRPC_MAX_MESSAGE_LENGTH), ] # Check connectivity, otherwise the stub is useless max_retries, backoff, err = 8, 2, "" for retry in range(max_retries): # approximated 255s try: channel = grpc.insecure_channel( self._launcher.analytical_engine_endpoint, options=options ) stub = engine_service_pb2_grpc.EngineServiceStub(channel) stub.HeartBeat(message_pb2.HeartBeatRequest()) return stub except grpc.RpcError as e: err = f"Error code: {e.code()}, details {e.details()}" logger.debug( "Connecting to analytical engine failed, tried %d time, will retry in %d seconds, error is %s", retry + 1, backoff, err, ) time.sleep(backoff) backoff *= 2 # exponential backoff raise RuntimeError( f"Failed to connect to engine in a reasonable time, deployment may failed: '{err}'. " "Please check coordinator log for more details" ) @property def analytical_grpc_stub(self): if self._launcher.analytical_engine_endpoint is None: raise RuntimeError("Analytical engine endpoint not set.") if self._analytical_grpc_stub is None: self._analytical_grpc_stub = self._create_analytical_grpc_stub() return self._analytical_grpc_stub def get_analytical_engine_config(self) -> {}: dag_def = create_single_op_dag(types_pb2.GET_ENGINE_CONFIG) response_head, _ = self.run_on_analytical_engine(dag_def, [], {}) config = json.loads( response_head.head.results[0].result.decode("utf-8", errors="ignore") ) config["engine_hosts"] = self._launcher.hosts # Disable ENABLE_JAVA_SDK when java is not installed on coordinator if config["enable_java_sdk"] == "ON": try: find_java_exe() except RuntimeError: logger.warning( "Disable java sdk support since java is not installed on coordinator" ) config["enable_java_sdk"] = "OFF" return config def _compile_lib_and_distribute(self, compile_func, lib_name, op, *args, **kwargs): algo_name = op.attr[types_pb2.APP_ALGO].s.decode("utf-8", errors="ignore") if ( types_pb2.GAR in op.attr or algo_name.startswith("giraph:") or algo_name.startswith("java_pie:") ): space = self._udf_app_workspace else: space = self._builtin_workspace lib_path, java_jar_path, java_ffi_path, app_type = compile_func( space, lib_name, op.attr, self.get_analytical_engine_config(), self._launcher, *args, **kwargs, ) # for java app compilation, we need to distribute the jar and ffi generated if app_type == "java_pie": self._launcher.distribute_file(java_jar_path) self._launcher.distribute_file(java_ffi_path) self._launcher.distribute_file(lib_path) return lib_path def heart_beat(self, request): return self.analytical_grpc_stub.HeartBeat(request) def add_lib(self, request): os.makedirs(self._resource_dir, exist_ok=True) fp = BytesIO(request.gar) with zipfile.ZipFile(fp, "r") as zip_ref: zip_ref.extractall(self._resource_dir) logger.info( "Coordinator received add lib request with file: %s", zip_ref.namelist() ) if len(zip_ref.namelist()) != 1: raise RuntimeError("Expect only one resource in one gar") filename = zip_ref.namelist()[0] filename = os.path.join(self._resource_dir, filename) self._launcher.distribute_file(filename) logger.info("Successfully distributed %s", filename) if filename.endswith(".jar"): logger.info("adding lib to java class path since it ends with .jar") self._java_class_path = filename + ":" + self._java_class_path logger.info("current java class path: %s", self._java_class_path) # Interactive engine related operations # ===================================== @Monitor.runOnInteractiveEngine def run_on_interactive_engine(self, dag_def: op_def_pb2.DagDef): response_head = message_pb2.RunStepResponseHead() for op in dag_def.op: self._key_to_op[op.key] = op op_pre_process(op, self._op_result_pool, self._key_to_op) if op.op == types_pb2.SUBGRAPH: op_result = self._gremlin_to_subgraph(op) else: raise RuntimeError("Unsupported op type: " + str(op.op)) response_head.results.append(op_result) # record op result self._op_result_pool[op.key] = op_result return message_pb2.RunStepResponse(head=response_head), [] def _gremlin_to_subgraph(self, op: op_def_pb2.OpDef): # noqa: C901 gremlin_script = op.attr[types_pb2.GIE_GREMLIN_QUERY_MESSAGE].s.decode() oid_type = op.attr[types_pb2.OID_TYPE].s.decode() request_options = None if types_pb2.GIE_GREMLIN_REQUEST_OPTIONS in op.attr: request_options = json.loads( op.attr[types_pb2.GIE_GREMLIN_REQUEST_OPTIONS].s.decode() ) object_id = op.attr[types_pb2.VINEYARD_ID].i gremlin_client = self._object_manager.get(object_id) def create_global_graph_builder( graph_name, num_workers, threads_per_executor, vineyard_rpc_endpoint ): import vineyard vineyard_client = vineyard.connect(*vineyard_rpc_endpoint.split(":")) instances = [key for key in vineyard_client.meta] # duplicate each instances for each thread per worker. if len(instances) == num_workers: local_stream_chunks = threads_per_executor else: assert ( num_workers % len(instances) == 0 ), f"Unable to distribute {num_workers} workers to {len(instances)} instances" local_stream_chunks = ( num_workers // len(instances) * threads_per_executor ) chunk_instances = [ key for key in instances for _ in range(local_stream_chunks) ] # build the vineyard::GlobalPGStream metadata = vineyard.ObjectMeta() metadata.set_global(True) metadata["typename"] = "vineyard::htap::GlobalPGStream" metadata["local_stream_chunks"] = local_stream_chunks metadata["total_stream_chunks"] = len(chunk_instances) # build the parallel stream for edge edge_metadata = vineyard.ObjectMeta() edge_metadata.set_global(True) edge_metadata["typename"] = "vineyard::ParallelStream" edge_metadata["__streams_-size"] = len(chunk_instances) # build the parallel stream for vertex vertex_metadata = vineyard.ObjectMeta() vertex_metadata.set_global(True) vertex_metadata["typename"] = "vineyard::ParallelStream" vertex_metadata["__streams_-size"] = len(chunk_instances) vertex_streams, edge_streams = [], [] # NB: we don't respect `num_workers`, instead, we create a substream # on each vineyard instance. # # Such a choice is to handle cases where that etcd instance still contains # information about dead instances. # # It should be ok, as each engine work will get its own local stream. But, # generally it should be equal to `num_workers`. for worker, instance_id in enumerate(chunk_instances): edge_stream = vineyard.ObjectMeta() edge_stream["typename"] = "vineyard::RecordBatchStream" edge_stream["nbytes"] = 0 edge_stream["params_"] = json.dumps( { "graph_name": graph_name, "kind": "edge", } ) edge = vineyard_client.create_metadata(edge_stream, instance_id) vineyard_client.persist(edge.id) edge_metadata.add_member("__streams_-%d" % worker, edge) edge_streams.append(edge.id) vertex_stream = vineyard.ObjectMeta() vertex_stream["typename"] = "vineyard::RecordBatchStream" vertex_stream["nbytes"] = 0 vertex_stream["params_"] = json.dumps( { "graph_name": graph_name, "kind": "vertex", } ) vertex = vineyard_client.create_metadata(vertex_stream, instance_id) vineyard_client.persist(vertex.id) vertex_metadata.add_member("__streams_-%d" % worker, vertex) vertex_streams.append(vertex.id) chunk_stream = vineyard.ObjectMeta() chunk_stream["typename"] = "vineyard::htap::PropertyGraphOutStream" chunk_stream["graph_name"] = graph_name chunk_stream["graph_schema"] = "{}" chunk_stream["nbytes"] = 0 chunk_stream["stream_index"] = worker chunk_stream.add_member("edge_stream", edge) chunk_stream.add_member("vertex_stream", vertex) chunk = vineyard_client.create_metadata(chunk_stream, instance_id) vineyard_client.persist(chunk.id) metadata.add_member("stream_chunk_%d" % worker, chunk) # build the vineyard::GlobalPGStream graph = vineyard_client.create_metadata(metadata) vineyard_client.persist(graph.id) vineyard_client.put_name(graph.id, graph_name) # build the parallel stream for edge edge = vineyard_client.create_metadata(edge_metadata) vineyard_client.persist(edge.id) vineyard_client.put_name(edge.id, f"__{graph_name}_edge_stream") # build the parallel stream for vertex vertex = vineyard_client.create_metadata(vertex_metadata) vineyard_client.persist(vertex.id) vineyard_client.put_name(vertex.id, f"__{graph_name}_vertex_stream") return ( repr(graph.id), repr(edge.id), repr(vertex.id), vertex_streams, edge_streams, ) def cleanup_stream( graph_name, vineyard_rpc_endpoint, vertex_stream_id, edge_stream_id, vertex_streams, edge_streams, ): import vineyard vineyard_client = vineyard.connect(*vineyard_rpc_endpoint.split(":")) vertex_stream_id = vineyard.ObjectID(vertex_stream_id) edge_stream_id = vineyard.ObjectID(edge_stream_id) for s in itertools.chain(vertex_streams, edge_streams): try: vineyard_client.stop_stream(vineyard.ObjectID(s), failed=True) except Exception: # noqa: E722, pylint: disable=broad-except pass try: vineyard_client.drop_stream(vineyard.ObjectID(s)) except Exception: # noqa: E722, pylint: disable=broad-except pass try: vineyard_client.drop_name(f"__{graph_name}_vertex_stream") except Exception: # noqa: E722, pylint: disable=broad-except pass try: vineyard_client.drop_name(f"__{graph_name}_edge_stream") except Exception: # noqa: E722, pylint: disable=broad-except pass try: vineyard_client.drop_name(graph_name) except Exception: # noqa: E722, pylint: disable=broad-except pass def load_subgraph( graph_name, total_builder_chunks, oid_type, edge_stream_id, vertex_stream_id, vineyard_rpc_endpoint, ): import vineyard # wait all flags been created, see also # # `PropertyGraphOutStream::Initialize(Schema schema)` vineyard_client = vineyard.connect(*vineyard_rpc_endpoint.split(":")) # wait for all stream been created by GAIA executor in FFI for worker in range(total_builder_chunks): name = "__%s_%d_streamed" % (graph_name, worker) vineyard_client.get_name(name, wait=True) vertices = [Loader(vineyard.ObjectID(vertex_stream_id))] edges = [Loader(vineyard.ObjectID(edge_stream_id))] oid_type = normalize_data_type_str(oid_type) v_labels = normalize_parameter_vertices(vertices, oid_type) e_labels = normalize_parameter_edges(edges, oid_type) loader_op = create_loader(v_labels + e_labels) config = { types_pb2.DIRECTED: utils.b_to_attr(True), types_pb2.OID_TYPE: utils.s_to_attr(oid_type), types_pb2.GENERATE_EID: utils.b_to_attr(False), # otherwise the new graph cannot be used for GIE types_pb2.RETAIN_OID: utils.b_to_attr(True), types_pb2.VID_TYPE: utils.s_to_attr("uint64_t"), types_pb2.IS_FROM_VINEYARD_ID: utils.b_to_attr(False), types_pb2.COMPACT_EDGES: utils.b_to_attr(False), types_pb2.USE_PERFECT_HASH: utils.b_to_attr(False), } new_op = create_graph( self._session_id, graph_def_pb2.ARROW_PROPERTY, inputs=[loader_op], attrs=config, ) # spawn a vineyard stream loader on coordinator loader_op_def = loader_op.as_op_def() coordinator_dag = op_def_pb2.DagDef() coordinator_dag.op.extend([loader_op_def]) # set the same key from subgraph to new op new_op_def = new_op.as_op_def() new_op_def.key = op.key dag = op_def_pb2.DagDef() dag.op.extend([new_op_def]) self.run_on_coordinator(coordinator_dag, [], {}) response_head, _ = self.run_on_analytical_engine(dag, [], {}) logger.info("subgraph has been loaded") return response_head.head.results[-1] # generate a random graph name now_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S") random_num = random.randint(0, 10000000) graph_name = "subgraph-%s-%s" % (str(now_time), str(random_num)) threads_per_worker = int( os.environ.get("THREADS_PER_WORKER", INTERACTIVE_ENGINE_THREADS_PER_WORKER) ) if ( self._launcher.type() == types_pb2.HOSTS and os.environ.get("PARALLEL_INTERACTIVE_EXECUTOR_ON_VINEYARD", "OFF") != "ON" ): executor_workers_num = 1 threads_per_executor = self._launcher.num_workers * threads_per_worker else: executor_workers_num = self._launcher.num_workers threads_per_executor = threads_per_worker vineyard_rpc_endpoint = self._launcher.vineyard_endpoint total_builder_chunks = executor_workers_num * threads_per_executor ( _graph_builder_id, edge_stream_id, vertex_stream_id, vertex_streams, edge_streams, ) = create_global_graph_builder( graph_name, executor_workers_num, threads_per_executor, vineyard_rpc_endpoint, ) # start a thread to launch the graph pool = futures.ThreadPoolExecutor() subgraph_task = pool.submit( load_subgraph, graph_name, total_builder_chunks, oid_type, edge_stream_id, vertex_stream_id, vineyard_rpc_endpoint, ) # add subgraph vertices and edges subgraph_script = "{0}.subgraph('{1}')".format( gremlin_script, graph_name, ) gremlin_error_message, graph_loading_error_message = None, None try: gremlin_client.submit( subgraph_script, request_options=request_options ).all().result() except Exception: # noqa: E722, pylint: disable=broad-except # # abort the streams e, err, _ = sys.exc_info() gremlin_error_message = ( f"Exception during subgraph's gremlin query execution: " f"'{e}', '{err}', with traceback: {traceback.format_exc()}" ) logger.error(gremlin_error_message) # cancel the stream to let the analytical engine exit the current loop logger.info("clean up stream ...") cleanup_stream( graph_name, vineyard_rpc_endpoint, vertex_stream_id, edge_stream_id, vertex_streams, edge_streams, ) logger.info("clean up stream finished ...") subgraph_object = None try: subgraph_object = subgraph_task.result() except Exception: # noqa: E722, pylint: disable=broad-except e, err, _ = sys.exc_info() graph_loading_error_message = ( f"Exception during subgraph's graph loading execution: " f"'{e}', '{err}', with traceback: {traceback.format_exc()}" ) logger.error(graph_loading_error_message) if gremlin_error_message is not None or graph_loading_error_message is not None: error_message = ( f"Error during subgraph execution, " f'gremlin error: "{gremlin_error_message}", ' f'graph loading error: "{graph_loading_error_message}"' ) raise RuntimeError(error_message) return subgraph_object # Learning engine related operations # ================================== def run_on_learning_engine(self, dag_def: op_def_pb2.DagDef): raise NotImplementedError("Learning engine is not implemented yet") # Coordinator related operations # ============================== def run_on_coordinator(self, dag_def, dag_bodies, loader_op_bodies): response_head = message_pb2.RunStepResponseHead() for op in dag_def.op: self._key_to_op[op.key] = op op_pre_process(op, self._op_result_pool, self._key_to_op) if op.op == types_pb2.DATA_SOURCE: op_result = self._process_data_source(op, dag_bodies, loader_op_bodies) elif op.op == types_pb2.DATA_SINK: op_result = self._process_data_sink(op) elif op.op == types_pb2.SERIALIZE_GRAPH: op_result = self._process_serialize_graph(op) elif op.op == types_pb2.DESERIALIZE_GRAPH: op_result = self._process_deserialize_graph(op) else: raise RuntimeError("Unsupported op type: " + str(op.op)) response_head.results.append(op_result) self._op_result_pool[op.key] = op_result return message_pb2.RunStepResponse(head=response_head), [] def _process_serialize_graph(self, op: op_def_pb2.OpDef): try: import vineyard import vineyard.io except ImportError: raise RuntimeError( "Saving context to locations requires 'vineyard', " "please install those two dependencies via " "\n" "\n" " pip3 install vineyard vineyard-io" "\n" "\n" ) storage_options = json.loads(op.attr[types_pb2.STORAGE_OPTIONS].s.decode()) vineyard_endpoint = self._launcher.vineyard_endpoint vineyard_ipc_socket = self._launcher.vineyard_socket deployment, hosts = self._launcher.get_vineyard_stream_info() path = op.attr[types_pb2.GRAPH_SERIALIZATION_PATH].s.decode() obj_id = op.attr[types_pb2.VINEYARD_ID].i vineyard.io.serialize( path, vineyard.ObjectID(obj_id), type="global", vineyard_ipc_socket=vineyard_ipc_socket, vineyard_endpoint=vineyard_endpoint, storage_options=storage_options, deployment=deployment, hosts=hosts, ) return op_def_pb2.OpResult(code=OK, key=op.key) def _process_deserialize_graph(self, op: op_def_pb2.OpDef): try: import vineyard import vineyard.io except ImportError: raise RuntimeError( "Saving context to locations requires 'vineyard', " "please install those two dependencies via " "\n" "\n" " pip3 install vineyard vineyard-io" "\n" "\n" ) storage_options = json.loads(op.attr[types_pb2.STORAGE_OPTIONS].s.decode()) vineyard_endpoint = self._launcher.vineyard_endpoint vineyard_ipc_socket = self._launcher.vineyard_socket deployment, hosts = self._launcher.get_vineyard_stream_info() path = op.attr[types_pb2.GRAPH_SERIALIZATION_PATH].s.decode() graph_id = vineyard.io.deserialize( path, type="global", vineyard_ipc_socket=vineyard_ipc_socket, vineyard_endpoint=vineyard_endpoint, storage_options=storage_options, deployment=deployment, hosts=hosts, ) # create graph_def # run create graph on analytical engine create_graph_op = create_single_op_dag( types_pb2.CREATE_GRAPH, config={ types_pb2.GRAPH_TYPE: utils.graph_type_to_attr( graph_def_pb2.ARROW_PROPERTY ), types_pb2.OID_TYPE: utils.s_to_attr("int64_t"), types_pb2.VID_TYPE: utils.s_to_attr("uint64_t"), types_pb2.IS_FROM_VINEYARD_ID: utils.b_to_attr(True), types_pb2.VINEYARD_ID: utils.i_to_attr(int(graph_id)), }, ) try: response_head, response_body = self.run_on_analytical_engine( create_graph_op, [], {} ) except grpc.RpcError as e: logger.error( "Create graph failed, code: %s, details: %s", e.code().name, e.details(), ) if e.code() == grpc.StatusCode.INTERNAL: raise AnalyticalEngineInternalError(e.details()) else: raise response_head.head.results[0].key = op.key return response_head.head.results[0] def _process_data_sink(self, op: op_def_pb2.OpDef): import vineyard import vineyard.io storage_options = json.loads(op.attr[types_pb2.STORAGE_OPTIONS].s.decode()) write_options = json.loads(op.attr[types_pb2.WRITE_OPTIONS].s.decode()) fd = op.attr[types_pb2.FD].s.decode() df = op.attr[types_pb2.VINEYARD_ID].s.decode() vineyard_endpoint = self._launcher.vineyard_endpoint vineyard_ipc_socket = self._launcher.vineyard_socket deployment, hosts = self._launcher.get_vineyard_stream_info() dfstream = vineyard.io.open( "vineyard://" + str(df), mode="r", vineyard_ipc_socket=vineyard_ipc_socket, vineyard_endpoint=vineyard_endpoint, deployment=deployment, hosts=hosts, ) vineyard.io.open( fd, dfstream, mode="w", vineyard_ipc_socket=vineyard_ipc_socket, vineyard_endpoint=vineyard_endpoint, storage_options=storage_options, write_options=write_options, deployment=deployment, hosts=hosts, ) return op_def_pb2.OpResult(code=OK, key=op.key) def _process_data_source( self, op: op_def_pb2.OpDef, dag_bodies, loader_op_bodies: dict ): def _spawn_vineyard_io_stream( source, storage_options, read_options, vineyard_endpoint, vineyard_ipc_socket, ): import vineyard import vineyard.io deployment, hosts = self._launcher.get_vineyard_stream_info() num_workers = self._launcher.num_workers stream_id = repr( vineyard.io.open( source, mode="r", vineyard_endpoint=vineyard_endpoint, vineyard_ipc_socket=vineyard_ipc_socket, hosts=hosts, num_workers=num_workers, deployment=deployment, read_options=read_options, storage_options=storage_options, ) ) return "vineyard", stream_id def _process_loader_func(loader, vineyard_endpoint, vineyard_ipc_socket): # loader is type of attr_value_pb2.Chunk protocol = loader.attr[types_pb2.PROTOCOL].s.decode() source = loader.attr[types_pb2.SOURCE].s.decode() try: storage_options = json.loads( loader.attr[types_pb2.STORAGE_OPTIONS].s.decode() ) read_options = json.loads( loader.attr[types_pb2.READ_OPTIONS].s.decode() ) except: # noqa: E722, pylint: disable=bare-except storage_options = {} read_options = {} filetype = read_options.get("filetype", None) filetype = str(filetype).upper() if ( protocol in ("hdfs", "hive", "oss", "s3") or protocol == "file" and ( source.endswith(".orc") or source.endswith(".parquet") or source.endswith(".pq") ) or filetype in ["ORC", "PARQUET"] ): new_protocol, new_source = _spawn_vineyard_io_stream( source, storage_options, read_options, vineyard_endpoint, vineyard_ipc_socket, ) logger.debug( "new_protocol = %s, new_source = %s", new_protocol, new_source ) loader.attr[types_pb2.PROTOCOL].CopyFrom(utils.s_to_attr(new_protocol)) loader.attr[types_pb2.SOURCE].CopyFrom(utils.s_to_attr(new_source)) vineyard_endpoint = self._launcher.vineyard_endpoint vineyard_ipc_socket = self._launcher.vineyard_socket for loader in op.large_attr.chunk_meta_list.items: # handle vertex or edge loader if loader.attr[types_pb2.CHUNK_TYPE].s.decode() == "loader": # set op bodies, this is for loading graph from numpy/pandas op_bodies = [] for bodies in dag_bodies: if bodies.body.op_key == op.key: op_bodies.append(bodies) loader_op_bodies[op.key] = op_bodies try: _process_loader_func(loader, vineyard_endpoint, vineyard_ipc_socket) except: # noqa: E722 logger.exception( "Failed to process loader function for %s:%s", loader.attr[types_pb2.PROTOCOL].s.decode(), loader.attr[types_pb2.SOURCE].s.decode(), ) raise return op_def_pb2.OpResult(code=OK, key=op.key)