in src/predict_many_samples.py [0:0]
def main():
parser = argparse.ArgumentParser(description="Prediction RdRP")
# for llm
parser.add_argument(
"--torch_hub_dir",
default=None,
type=str,
help="set the torch hub dir path for saving pretrained model(default:~/.cache/torch/hub)"
)
# for input
parser.add_argument(
"--fasta_file",
default=None,
type=str,
required=True,
help="fasta file path"
)
parser.add_argument(
"--save_file",
default=None,
type=str,
required=True,
help="the result file path"
)
parser.add_argument(
"--truncation_seq_length",
default=4096,
type=int,
required=True,
help="truncation seq length(include: [CLS] and [SEP]"
)
parser.add_argument(
"--emb_dir",
default=None,
type=str,
help="the llm embedding save dir. default: None"
)
parser.add_argument(
"--pdb_dir",
default=None,
type=str,
help="the 3d-structure pdb save dir. default: None"
)
parser.add_argument(
"--chain",
default=None,
type=str,
help="pdb chain for contact map computing"
)
# for trained checkpoint
parser.add_argument(
"--dataset_name",
default="rdrp_40_extend",
type=str,
required=True,
help="the dataset name for model building."
)
parser.add_argument(
"--dataset_type",
default="protein",
type=str,
required=True,
help="the dataset type for model building."
)
parser.add_argument(
"--task_type",
default=None,
type=str,
required=True,
choices=["multi_label", "multi_class", "binary_class"],
help="the task type for model building."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="the model type."
)
parser.add_argument(
"--time_str",
default=None,
type=str,
required=True,
help="the running time string(yyyymmddHimiss) of trained checkpoint building."
)
parser.add_argument(
"--step",
default=None,
type=str,
required=True,
help="the training global step of model finalization."
)
parser.add_argument(
"--threshold",
default=0.5,
type=float,
help="sigmoid threshold for binary-class or multi-label classification, None for multi-class classification, defualt: 0.5."
)
parser.add_argument(
"--print_per_number",
default=100,
type=int,
help="print per number"
)
parser.add_argument(
"--gpu_id",
default=None,
type=int,
help="the used gpu index, -1 for cpu"
)
input_args = parser.parse_args()
return input_args