def __init__()

in src/deep_baselines/virseeker.py [0:0]


    def __init__(self, config, args):
        '''
        :param config:
        :param args:
        '''
        super(VirSeeker, self).__init__()
        self.max_position_embeddings = config.max_position_embeddings
        self.embedding = config.embedding
        self.embedding_trainable = config.embedding_trainable
        self.embedding_dim = config.embedding_dim
        self.vocab_size = config.vocab_size
        self.bidirectional = config.bidirectional
        self.num_layers = config.num_layers
        self.hidden_dim = config.hidden_dim
        self.dropout = config.dropout
        self.bias = config.bias
        self.num_labels = config.num_labels
        self.output_mode = args.output_mode
        self.padding_idx = config.padding_idx
        self.batch_first = config.batch_first
        self.rnn_model = config.rnn_model
        if hasattr(config, "padding_idx"):
            self.padding_idx = config.padding_idx
        elif hasattr(args, "padding_idx"):
            self.padding_idx = args.padding_idx
        else:
            self.padding_idx = 0
        if self.num_labels == 2:
            self.num_labels = 1

        if self.embedding:
            self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim, padding_idx=self.padding_idx)
            if self.embedding_trainable:
                self.embedding.weight.requires_grad = True
            else:
                self.embedding.weight.requires_grad = False
        if self.num_layers == 1:
            if self.rnn_model.lower() == 'lstm':
                self.rnn = nn.LSTM(input_size=self.embedding_dim if self.embedding else 1, hidden_size=self.hidden_dim,
                                    num_layers=self.num_layers, bidirectional=self.bidirectional,
                                    batch_first=self.batch_first)
            elif self.rnn_model.lower() == 'gru':
                self.rnn = nn.GRU(input_size=self.embedding_dim if self.embedding else 1, hidden_size=self.hidden_dim,
                                    num_layers=self.num_layers, bidirectional=self.bidirectional,
                                    batch_first=self.batch_first)

        else:
            if self.rnn_model.lower() == 'lstm':
                self.rnn = nn.LSTM(input_size=self.embedding_dim if self.embedding else 1, hidden_size=self.hidden_dim,
                                   num_layers=self.num_layers, bidirectional=self.bidirectional,
                                   batch_first=self.batch_first,
                                   dropout=self.dropout)
            elif self.rnn_model.lower() == 'gru':
                self.rnn = nn.GRU(input_size=self.embedding_dim if self.embedding else 1, hidden_size=self.hidden_dim,
                                  num_layers=self.num_layers, bidirectional=self.bidirectional,
                                  batch_first=self.batch_first,
                                  dropout=self.dropout)
        self.linear_layer = nn.Linear(self.hidden_dim * 2 if self.bidirectional else self.hidden_dim, self.num_labels, bias=self.bias)

        if args.sigmoid:
            self.output = nn.Sigmoid()
        else:
            if self.num_labels > 1:
                self.output = nn.Softmax(dim=1)

            else:
                self.output = None

        self.loss_type = args.loss_type

        # positive weight
        if hasattr(config, "pos_weight"):
            self.pos_weight = config.pos_weight
        elif hasattr(args, "pos_weight"):
            self.pos_weight = args.pos_weight
        else:
            self.pos_weight = None

        if hasattr(config, "weight"):
            self.weight = config.weight
        elif hasattr(args, "weight"):
            self.weight = args.weight
        else:
            self.weight = None

        if self.output_mode in ["regression"]:
            self.loss_fct = MSELoss()
        elif self.output_mode in ["multi_label", "multi-label"]:
            if self.loss_type == "bce":
                if self.pos_weight:
                    # [1, 1, 1, ,1, 1...] length: self.num_labels
                    assert self.pos_weight.ndim == 1 and self.pos_weight.shape[0] == self.num_labels
                    self.loss_fct = BCEWithLogitsLoss(pos_weight=self.pos_weight)
                else:
                    self.loss_fct = BCEWithLogitsLoss(reduction=config.loss_reduction if hasattr(config, "loss_reduction") else "sum")
            elif self.loss_type == "asl":
                self.loss_fct = AsymmetricLossOptimized(gamma_neg=args.asl_gamma_neg if hasattr(args, "asl_gamma_neg") else 4,
                                                        gamma_pos=args.asl_gamma_pos if hasattr(args, "asl_gamma_pos") else 1,
                                                        clip=args.clip if hasattr(args, "clip") else 0.05,
                                                        eps=args.eps if hasattr(args, "eps") else 1e-8,
                                                        disable_torch_grad_focal_loss=args.disable_torch_grad_focal_loss if hasattr(args, "disable_torch_grad_focal_loss") else False)
            elif self.loss_type == "focal_loss":
                self.loss_fct = FocalLoss(alpha=args.focal_loss_alpha if hasattr(args, "focal_loss_alpha") else 1,
                                          gamma=args.focal_loss_gamma if hasattr(args, "focal_loss_gamma") else 0.25,
                                          normalization=False,
                                          reduce=args.focal_loss_reduce if hasattr(args, "focal_loss_reduce") else False)
            elif self.loss_type == "multilabel_cce":
                self.loss_fct = MultiLabel_CCE(normalization=False)
        elif self.output_mode in ["binary_class", "binary-class"]:
            if self.loss_type == "bce":
                if self.pos_weight:
                    # [0.9]
                    if isinstance(self.pos_weight, int):
                        self.pos_weight = torch.tensor([self.pos_weight], dtype=torch.long).to(args.device)
                    elif isinstance(self.pos_weight, float):
                        self.pos_weight = torch.tensor([self.pos_weight], dtype=torch.float32).to(args.device)
                    assert self.pos_weight.ndim == 1 and self.pos_weight.shape[0] == 1
                    self.loss_fct = BCEWithLogitsLoss(pos_weight=self.pos_weight)
                else:
                    self.loss_fct = BCEWithLogitsLoss()
            elif self.loss_type == "focal_loss":
                self.loss_fct = FocalLoss(alpha=args.focal_loss_alpha if hasattr(args, "focal_loss_alpha") else 1,
                                          gamma=args.focal_loss_gamma if hasattr(args, "focal_loss_gamma") else 0.25,
                                          normalization=False,
                                          reduce=args.focal_loss_reduce if hasattr(args, "focal_loss_reduce") else False)
        elif self.output_mode in ["multi_class", "multi-class"]:
            if self.weight:
                # [1, 1, 1, ,1, 1...] length: self.num_labels
                assert self.weight.ndim == 1 and self.weight.shape[0] == self.num_labels
                self.loss_fct = CrossEntropyLoss(weight=self.weight)
            else:
                self.loss_fct = CrossEntropyLoss()
        else:
            raise Exception("Not support output mode: %s." % self.output_mode)