in src/baselines/dnn.py [0:0]
def evaluate(args, model, dataset, prefix, log_fp=None):
'''
evaluate
:param args:
:param model:
:param dataset:
:param prefix:
:param log_fp:
:return:
'''
output_dir = os.path.join(args.output_dir, prefix)
print("Evaluating dir path: ", output_dir)
if not os.path.exists(output_dir) and args.local_rank in [-1, 0]:
os.makedirs(output_dir)
result = {}
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataset_total_num = len(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
eval_batch_total_num = len(eval_dataloader)
print("Dev dataset len: %d, batch num: %d" % (eval_dataset_total_num, eval_batch_total_num))
# multi GPU
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# evaluate
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info("Num examples = %d", eval_dataset_total_num)
logger.info("Batch size = %d", args.eval_batch_size)
if log_fp:
log_fp.write("***** Running evaluation {} *****\n".format(prefix))
log_fp.write("Dev Dataset Num examples = %d\n" % eval_dataset_total_num)
log_fp.write("Dev Dataset Instantaneous batch size per GPU = %d\n" % args.per_gpu_eval_batch_size)
log_fp.write("Dev Dataset batch number = %d\n" % eval_batch_total_num)
log_fp.write("#" * 50 + "\n")
eval_loss = 0.0
nb_eval_steps = 0
# predicted prob
pred_scores = None
# ground truth
out_label_ids = None
for batch in tqdm(eval_dataloader, total=eval_batch_total_num, desc="Evaluating"):
# evaluate
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"inputs": batch[0],
"labels": batch[-1]
}
outputs = model(**inputs)
tmp_eval_loss, logits, output = outputs[:3]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if pred_scores is None:
pred_scores = output.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
pred_scores = np.append(pred_scores, output.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode in ["multi-label", "multi_label"]:
result = metrics_multi_label(out_label_ids, pred_scores, threshold=0.5)
elif args.output_mode in ["multi-class", "multi_class"]:
result = metrics_multi_class(out_label_ids, pred_scores)
elif args.output_mode == "regression":
pass # to do
elif args.output_mode in ["binary-class", "binary_class"]:
result = metrics_binary(out_label_ids, pred_scores, threshold=0.5,
savepath=os.path.join(output_dir, "dev_confusion_matrix.png"))
with open(os.path.join(output_dir, "dev_metrics.txt"), "w") as writer:
logger.info("***** Eval Dev results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
logger.info("Dev metrics: ")
logger.info(json.dumps(result, ensure_ascii=False))
logger.info("")
return result