def __init__()

in src/deep_baselines/virhunter.py [0:0]


    def __init__(self, config, args):
        super(VirHunter, self).__init__()
        self.one_hot_encode = config.one_hot_encode
        self.vocab_size = config.vocab_size
        self.max_position_embeddings = config.max_position_embeddings
        self.embedding_trainable = config.embedding_trainable
        self.embedding_dim = config.embedding_dim
        self.num_labels = config.num_labels
        self.kernel_num = config.kernel_num
        self.kernel_size = config.kernel_size
        self.dropout = config.dropout
        self.reverse = config.reverse
        self.bias = config.bias
        self.fc_size = config.fc_size
        self.output_mode = args.output_mode
        self.padding_idx = config.padding_idx
        if self.num_labels == 2:
            self.num_labels = 1
        if not self.one_hot_encode:
            self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim, padding_idx=self.padding_idx)
            if self.embedding_trainable:
                self.embedding.weight.requires_grad = True
            else:
                self.embedding.weight.requires_grad = False

        self.hidden_layers = nn.ModuleList(
            [
                nn.Conv1d(self.vocab_size if self.one_hot_encode else self.embedding_dim, self.kernel_num, self.kernel_size, bias=self.bias),
                nn.LeakyReLU(negative_slope=0.1),
                nn.MaxPool1d(self.max_position_embeddings - self.kernel_size + 1, stride=1),
                nn.Dropout(self.dropout)
            ]
        )
        if self.reverse:
            self.dense = nn.Linear(self.kernel_num + self.kernel_num, self.fc_size, bias=self.bias)
        else:
            self.dense = nn.Linear(self.kernel_num, self.fc_size, bias=self.bias)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.1)
        self.linear_layer = nn.Linear(self.fc_size, self.num_labels, bias=self.bias)

        if args.sigmoid:
            self.output = nn.Sigmoid()
        else:
            if self.num_labels > 1:
                self.output = nn.Softmax(dim=1)

            else:
                self.output = None

        self.loss_type = args.loss_type

        # positive weight
        if hasattr(config, "pos_weight"):
            self.pos_weight = config.pos_weight
        elif hasattr(args, "pos_weight"):
            self.pos_weight = args.pos_weight
        else:
            self.pos_weight = None

        if hasattr(config, "weight"):
            self.weight = config.weight
        elif hasattr(args, "weight"):
            self.weight = args.weight
        else:
            self.weight = None

        if self.output_mode in ["regression"]:
            self.loss_fct = MSELoss()
        elif self.output_mode in ["multi_label", "multi-label"]:
            if self.loss_type == "bce":
                if self.pos_weight:
                    # [1, 1, 1, ,1, 1...] length: self.num_labels
                    assert self.pos_weight.ndim == 1 and self.pos_weight.shape[0] == self.num_labels
                    self.loss_fct = BCEWithLogitsLoss(pos_weight=self.pos_weight)
                else:
                    self.loss_fct = BCEWithLogitsLoss(reduction=config.loss_reduction if hasattr(config, "loss_reduction") else "sum")
            elif self.loss_type == "asl":
                self.loss_fct = AsymmetricLossOptimized(gamma_neg=args.asl_gamma_neg if hasattr(args, "asl_gamma_neg") else 4,
                                                        gamma_pos=args.asl_gamma_pos if hasattr(args, "asl_gamma_pos") else 1,
                                                        clip=args.clip if hasattr(args, "clip") else 0.05,
                                                        eps=args.eps if hasattr(args, "eps") else 1e-8,
                                                        disable_torch_grad_focal_loss=args.disable_torch_grad_focal_loss if hasattr(args, "disable_torch_grad_focal_loss") else False)
            elif self.loss_type == "focal_loss":
                self.loss_fct = FocalLoss(alpha=args.focal_loss_alpha if hasattr(args, "focal_loss_alpha") else 1,
                                          gamma=args.focal_loss_gamma if hasattr(args, "focal_loss_gamma") else 0.25,
                                          normalization=False,
                                          reduce=args.focal_loss_reduce if hasattr(args, "focal_loss_reduce") else False)
            elif self.loss_type == "multilabel_cce":
                self.loss_fct = MultiLabel_CCE(normalization=False)
        elif self.output_mode in ["binary_class", "binary-class"]:
            if self.loss_type == "bce":
                if self.pos_weight:
                    # [0.9]
                    if isinstance(self.pos_weight, int):
                        self.pos_weight = torch.tensor([self.pos_weight], dtype=torch.long).to(args.device)
                    elif isinstance(self.pos_weight, float):
                        self.pos_weight = torch.tensor([self.pos_weight], dtype=torch.float32).to(args.device)
                    assert self.pos_weight.ndim == 1 and self.pos_weight.shape[0] == 1
                    self.loss_fct = BCEWithLogitsLoss(pos_weight=self.pos_weight)
                else:
                    self.loss_fct = BCEWithLogitsLoss()
            elif self.loss_type == "focal_loss":
                self.loss_fct = FocalLoss(alpha=args.focal_loss_alpha if hasattr(args, "focal_loss_alpha") else 1,
                                          gamma=args.focal_loss_gamma if hasattr(args, "focal_loss_gamma") else 0.25,
                                          normalization=False,
                                          reduce=args.focal_loss_reduce if hasattr(args, "focal_loss_reduce") else False)
        elif self.output_mode in ["multi_class", "multi-class"]:
            if self.weight:
                # [1, 1, 1, ,1, 1...] length: self.num_labels
                assert self.weight.ndim == 1 and self.weight.shape[0] == self.num_labels
                self.loss_fct = CrossEntropyLoss(weight=self.weight)
            else:
                self.loss_fct = CrossEntropyLoss()
        else:
            raise Exception("Not support output mode: %s." % self.output_mode)