src/common/loss.py (150 lines of code) (raw):

#!/usr/bin/env python # encoding: utf-8 ''' *Copyright (c) 2023, Alibaba Group; *Licensed under the Apache License, Version 2.0 (the "License"); *you may not use this file except in compliance with the License. *You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 *Unless required by applicable law or agreed to in writing, software *distributed under the License is distributed on an "AS IS" BASIS, *WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *See the License for the specific language governing permissions and *limitations under the License. @author: Hey @email: sanyuan.**@**.com @tel: 137****6540 @datetime: 2022/11/26 21:05 @project: DeepProtFunc @file: loss @desc: some loss functions ''' import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): ''' Focal loss ''' def __init__(self, alpha=1, gamma=2, normalization=False, reduce=False): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.normalization = normalization self.reduce = reduce def forward(self, inputs, targets): if self.normalization: ''' reduction: the operation on the output loss, which can be set to 'none', 'mean', and 'sum'; 'none'will not perform any processing on the loss, 'mean' will calculate the mean of the loss, 'sum' will sum the loss, and the default is 'mean' ''' bce = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') probs = torch.sigmoid(inputs) else: bce = F.binary_cross_entropy(inputs, targets, reduction='none') probs = inputs pt = targets * probs + (1 - targets) * (1 - probs) modulate = 1 if self.gamma is None else (1 - pt) ** self.gamma focal_loss = modulate * bce if self.alpha is not None: assert 0 <= self.alpha <= 1 alpha_weights = targets * self.alpha + (1 - targets) * (1 - self.alpha) focal_loss *= alpha_weights if self.reduce: # global mean return torch.mean(focal_loss) else: # sum of all samples and calc the mean value return torch.mean(torch.sum(focal_loss, dim=1)) class MultiLabel_CCE(nn.Module): ''' multi label cce ''' def __init__(self, normalization=False): super(MultiLabel_CCE, self).__init__() self.normalization = normalization def forward(self, inputs, targets): """ Cross entropy of multi-label classification Note:The shapes of y_true and y_pred are consistent, and the elements of y_true are either 0 or 1. 1 indicates that the corresponding class is a target class, and 0 indicates that the corresponding class is a non-target class. """ if self.normalization: y_pred = nn.Sigmoid()(inputs) else: y_pred = inputs y_true = targets y_pred = (1 - 2 * y_true) * y_pred y_pred_neg = y_pred - y_true * 1e12 y_pred_pos = y_pred - (1 - y_true) * 1e12 zeros = torch.zeros_like(y_pred[..., :1]) y_pred_neg = torch.cat((y_pred_neg, zeros), axis=-1) y_pred_pos = torch.cat((y_pred_pos, zeros), axis=-1) neg_loss = torch.logsumexp(y_pred_neg, axis=-1) pos_loss = torch.logsumexp(y_pred_pos, axis=-1) loss = torch.mean(neg_loss + pos_loss) return loss class AsymmetricLoss(nn.Module): def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True): super(AsymmetricLoss, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ # Calculating Probabilities x_sigmoid = torch.sigmoid(x) xs_pos = x_sigmoid xs_neg = 1 - x_sigmoid # Asymmetric Clipping if self.clip is not None and self.clip > 0: xs_neg = (xs_neg + self.clip).clamp(max=1) # Basic CE calculation los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) loss = los_pos + los_neg # Asymmetric Focusing if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(False) pt0 = xs_pos * y pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p pt = pt0 + pt1 one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) one_sided_w = torch.pow(1 - pt, one_sided_gamma) if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(True) loss *= one_sided_w return -loss.sum() class AsymmetricLossOptimized(nn.Module): ''' Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations''' def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimized, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps # prevent memory allocation and gpu uploading every iteration, and encourages inplace operations self.targets = self.anti_targets = self.xs_pos = self.xs_neg = self.asymmetric_w = self.loss = None def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ self.targets = y self.anti_targets = 1 - y # Calculating Probabilities self.xs_pos = torch.sigmoid(x) self.xs_neg = 1.0 - self.xs_pos # Asymmetric Clipping if self.clip is not None and self.clip > 0: self.xs_neg.add_(self.clip).clamp_(max=1) # Basic CE calculation self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps))) # Asymmetric Focusing if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(False) self.xs_pos = self.xs_pos * self.targets self.xs_neg = self.xs_neg * self.anti_targets self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets) if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(True) self.loss *= self.asymmetric_w return -self.loss.sum() class ASLSingleLabel(nn.Module): ''' This loss is intended for single-label classification problems(multi-class) ''' def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction='mean'): super(ASLSingleLabel, self).__init__() self.eps = eps self.logsoftmax = nn.LogSoftmax(dim=-1) self.targets_classes = [] self.gamma_pos = gamma_pos self.gamma_neg = gamma_neg self.reduction = reduction def forward(self, inputs, target): ''' "input" dimensions: - (batch_size,number_classes) "target" dimensions: - (batch_size) ''' num_classes = inputs.size()[-1] log_preds = self.logsoftmax(inputs) self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) # ASL weights targets = self.targets_classes anti_targets = 1 - targets xs_pos = torch.exp(log_preds) xs_neg = 1 - xs_pos xs_pos = xs_pos * targets xs_neg = xs_neg * anti_targets asymmetric_w = torch.pow(1 - xs_pos - xs_neg, self.gamma_pos * targets + self.gamma_neg * anti_targets) log_preds = log_preds * asymmetric_w if self.eps > 0: # label smoothing self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) # loss calculation loss = - self.targets_classes.mul(log_preds) loss = loss.sum(dim=-1) if self.reduction == 'mean': loss = loss.mean() return loss