in tools/cpp/ModuleBasic.cpp [93:487]
int main(int argc, char *argv[]) {
if (argc < 3) {
MNN_ERROR("Usage: ./ModuleBasic.out ${test.mnn} ${Dir} [runMask] [forwardType] [runLoops] [numberThread] [precision | memory] [cacheFile]\n");
return 0;
}
BackendConfig backendConfigTmp;
auto _executor = Executor::newExecutor(MNN_FORWARD_CPU, backendConfigTmp, 1);
ExecutorScope _s(_executor);
std::string modelName = argv[1];
std::string directName = argv[2];
MNN_PRINT("Test %s from input info: %s\n", modelName.c_str(), directName.c_str());
std::map<std::string, float> inputInfo;
std::map<std::string, std::vector<int>> inputShape;
std::vector<std::string> inputNames;
std::vector<std::string> outputNames;
bool checkOutput = false;
int runMask = 0;
if (argc > 3) {
runMask = atoi(argv[3]);
if (runMask & 1) {
_initDebug();
}
if (runMask & 2) {
_initTensorStatic();
}
}
int repeatNumber = 1;
bool shapeMutable = true;
std::vector<VARP> inputs;
std::vector<VARP> outputs;
if (runMask & 128) {
MNN_PRINT("Use input.mnn and output.mnn for test\n");
inputs = MNN::Express::Variable::load((directName + "/input.mnn").c_str());
outputs = MNN::Express::Variable::load((directName + "/output.mnn").c_str());
if (inputs.size() > 0 && outputs.size() > 0) {
MNN_PRINT("Has input.mnn, use input.mnn and output.mnn instead of json\n");
}
for (auto v : inputs) {
inputNames.emplace_back(v->name());
}
for (auto v : outputs) {
outputNames.emplace_back(v->name());
}
checkOutput = outputs.size() > 0;
}
// Call Time / Per Second
float freq = 0.0f;
int cpuDecreaseRate = -1;
if (inputNames.empty()) {
rapidjson::Document document;
std::ostringstream jsonNameOs;
jsonNameOs << directName << "/input.json";
std::ifstream fileNames(jsonNameOs.str().c_str());
std::ostringstream output;
output << fileNames.rdbuf();
auto outputStr = output.str();
document.Parse(outputStr.c_str());
if (document.HasParseError()) {
MNN_ERROR("Invalid json\n");
return 0;
}
if (document.HasMember("inputs")) {
auto inputsInfo = document["inputs"].GetArray();
for (auto iter = inputsInfo.begin(); iter !=inputsInfo.end(); iter++) {
auto obj = iter->GetObject();
std::string name = obj["name"].GetString();
inputNames.emplace_back(name);
MNN_PRINT("%s\n", name.c_str());
if (obj.HasMember("value")) {
float value = obj["value"].GetFloat();
inputInfo.insert(std::make_pair(name, value));
}
if (obj.HasMember("shape")) {
auto dims = obj["shape"].GetArray();
std::vector<int> shapes;
for (auto iter = dims.begin(); iter != dims.end(); iter++) {
shapes.emplace_back(iter->GetInt());
}
inputShape.insert(std::make_pair(name, shapes));
}
}
}
if (document.HasMember("outputs")) {
checkOutput = true;
auto array = document["outputs"].GetArray();
for (auto iter = array.begin(); iter !=array.end(); iter++) {
std::string name = iter->GetString();
MNN_PRINT("output: %s\n", name.c_str());
outputNames.emplace_back(name);
}
}
if (document.HasMember("shapeMutable")) {
shapeMutable = document["shapeMutable"].GetBool();
}
if (document.HasMember("repeat")) {
repeatNumber = document["repeat"].GetInt();
}
if (document.HasMember("freq")) {
freq = document["freq"].GetFloat();
}
if (document.HasMember("cpu_decrease_rate")) {
cpuDecreaseRate = document["cpu_decrease_rate"].GetInt();
}
}
auto type = MNN_FORWARD_CPU;
if (argc > 4) {
type = (MNNForwardType)atoi(argv[4]);
MNN_PRINT("Use extra forward type: %d\n", type);
}
// Default single thread
int modeNum = 1;
if (argc > 6) {
modeNum = ::atoi(argv[6]);
}
int power = BackendConfig::Power_Normal;
int precision = BackendConfig::Precision_Normal;
int memory = BackendConfig::Memory_Normal;
if (argc > 7) {
int mask = atoi(argv[7]);
precision = mask % 4;
memory = (mask / 4) % 4;
power = (mask / 16) % 4;
}
const char* cacheFileName = ".tempcache";
if (argc > 8) {
cacheFileName = argv[8];
}
FUNC_PRINT(precision);
FUNC_PRINT(memory);
FUNC_PRINT(power);
FUNC_PRINT_ALL(cacheFileName, s);
// create session
MNN::ScheduleConfig config;
config.type = type;
/*modeNum means gpuMode for GPU usage, Or means numThread for CPU usage.*/
config.numThread = modeNum;
// If type not fount, let it failed
config.backupType = type;
BackendConfig backendConfig;
// config.path.outputs.push_back("ResizeBilinear_2");
backendConfig.power = (BackendConfig::PowerMode)power;
backendConfig.precision = static_cast<MNN::BackendConfig::PrecisionMode>(precision);
backendConfig.memory = static_cast<MNN::BackendConfig::MemoryMode>(memory);
config.backendConfig = &backendConfig;
MNN::Express::Module::Config mConfig;
if (runMask & 256) {
mConfig.dynamic = true;
}
mConfig.shapeMutable = shapeMutable;
std::shared_ptr<Executor::RuntimeManager> rtmgr(Executor::RuntimeManager::createRuntimeManager(config));
rtmgr->setCache(cacheFileName);
rtmgr->setHint(MNN::Interpreter::INIT_THREAD_NUMBER, 4);
if (cpuDecreaseRate > 0 && cpuDecreaseRate <= 100) {
rtmgr->setHint(Interpreter::CPU_LITTLECORE_DECREASE_RATE, cpuDecreaseRate);
}
if (runMask & 1) {
// Need dump tensor, open debug
rtmgr->setMode(Interpreter::Session_Debug);
}
if (runMask & 2) {
// Need tensor static for each op, open debug
rtmgr->setMode(Interpreter::Session_Debug);
}
// For Debug
if (false) {
int geometryMask = Interpreter::GeometryComputeMask::GEOMETRCOMPUTEMASK_ALL;
geometryMask -= Interpreter::GeometryComputeMask::GEOMETRCOMPUTEMASK_FUSEREGION;
geometryMask -= Interpreter::GeometryComputeMask::GEOMETRCOMPUTEMASK_OPENCACHE;
rtmgr->setHint(Interpreter::GEOMETRY_COMPUTE_MASK, geometryMask);
}
if (runMask & 4) {
// Need time trace for each op, open debug
rtmgr->setMode(Interpreter::Session_Debug);
}
if (runMask & 8) {
rtmgr->setMode(Interpreter::Session_Input_Inside);
}
if (runMask & 16) {
rtmgr->setMode(Interpreter::Session_Backend_Auto);
rtmgr->setHint(Interpreter::MAX_TUNING_NUMBER, 50);
}
if (runMask & 32) {
mConfig.rearrange = true;
}
if (runMask & 512) {
rtmgr->setHint(Interpreter::WINOGRAD_MEMORY_LEVEL, 0);
}
if (runMask & 1024) {
/*
2: INPUT_BLOCK_QUANT
1: INPUT_SHARE_ONE_SCALE
0: INPUT_CHANNEL_QUANT
*/
rtmgr->setHint(Interpreter::DYNAMIC_QUANT_OPTIONS, 2);
}
if (runMask & 2048) {
rtmgr->setExternalPath("tmp", Interpreter::EXTERNAL_FEATUREMAP_DIR);
}
std::shared_ptr<Module> net;
{
AUTOTIME;
net.reset(Module::load(inputNames, outputNames, modelName.c_str(), rtmgr, &mConfig));
if (net == nullptr) {
MNN_PRINT("Error: can't load module\n");
return 0;
}
if (runMask & 64) {
net.reset(Module::clone(net.get()));
}
}
auto mInfo = net->getInfo();
#define LOAD_DATA(TYPE)\
if (inputInfo.find(inputName) != inputInfo.end()) {\
auto value = inputInfo[inputName];\
for (int i=0; i<info->size; ++i) {\
ptr[i] = value;\
}\
} else {\
std::ostringstream fileNameOs;\
fileNameOs << directName << "/" << inputName << ".txt";\
auto fileName = fileNameOs.str();\
std::ifstream inputOs(fileName.c_str());\
if (inputOs.fail()) {\
MNN_ERROR("TESTERROR Can't open %s\n", fileName.c_str());\
continue;\
}\
for (int i=0; i<info->size; ++i) {\
double tempValue;\
inputOs >> tempValue;\
ptr[i] = tempValue;\
}\
}
if (inputs.empty()) {
inputs.resize(mInfo->inputs.size());
for (int i=0; i<inputs.size(); ++i) {
inputs[i] = _Input(mInfo->inputs[i].dim, mInfo->inputs[i].order, mInfo->inputs[i].type);
}
// Load inputs
for (int i=0; i<inputs.size(); ++i) {
auto inputName = inputNames[i];
// Resize
auto shapeIter = inputShape.find(inputName);
auto order = mInfo->inputs[i].order;
if (MNN::Express::Dimensionformat::NC4HW4 == mInfo->inputs[i].order) {
order = MNN::Express::Dimensionformat::NCHW;
}
if (shapeIter != inputShape.end()) {
auto s = shapeIter->second;
inputs[i] = _Input(s, order, mInfo->inputs[i].type);
}
auto info = inputs[i]->getInfo();
if (info->type == halide_type_of<float>()){
auto ptr = inputs[i]->writeMap<float>();
LOAD_DATA(float)
} else {
auto floatVar = _Input(info->dim, info->order, halide_type_of<float>());
auto ptr = floatVar->writeMap<float>();
LOAD_DATA(float)
auto temp = _Cast(floatVar, info->type);
inputs[i]->input(temp);
}
if (MNN::Express::Dimensionformat::NC4HW4 == mInfo->inputs[i].order) {
inputs[i] = _Convert(inputs[i], MNN::Express::Dimensionformat::NC4HW4);
}
}
}
#undef LOAD_DATA
bool modelError = false;
for (int repeat = 0; repeat < repeatNumber; ++repeat) {
MNN_PRINT("Run for %d time\n", repeat);
std::vector<VARP> subInputs = inputs;
if (repeat % 2 == 1) {
for (int i=0; i<inputs.size(); ++i) {
subInputs[i] = _Clone(inputs[i], true);
}
}
auto outputs = net->onForward(inputs);
if (outputs.empty()) {
MNN_ERROR("Error in forward\n");
return 0;
}
for (int i=0; i<outputNames.size(); ++i) {
auto name = outputNames[i];
auto v = outputs[i];
auto info = v->getInfo();
if (nullptr == info) {
continue;
}
if (info->order == NC4HW4 && info->dim.size() > 1) {
v = _Convert(v, mInfo->defaultFormat);
}
if (info->type.code != halide_type_float) {
v = _Cast<float>(v);
}
v.fix(VARP::CONSTANT);
outputs[i] = v;
}
if (checkOutput) {
for (int i=0; i<outputNames.size(); ++i) {
auto output = outputs[i];
bool success = compareOutput(output, directName, outputNames[i], mInfo->defaultFormat, i);
if (!success) {
modelError = true;
MNN_ERROR("%d run Error for output %s\n", repeat, outputNames[i].c_str());
}
}
}
for (int i=0; i<outputNames.size(); ++i) {
auto name = outputNames[i];
auto v = outputs[i];
auto info = v->getInfo();
std::ostringstream fileNameOs;
fileNameOs << "output/" << repeat <<"_"<< i << ".txt";
auto fileName = fileNameOs.str();
MNN_PRINT("Write %s output to %s\n", name.c_str(), fileName.c_str());
std::ofstream _output(fileName.c_str());
auto ptr = v->readMap<float>();
for (int v=0; v<info->size; ++v) {
_output << ptr[v] << "\n";
}
}
// Print module's memory
float memoryInMB = 0.0f;
rtmgr->getInfo(Interpreter::MEMORY, &memoryInMB);
FUNC_PRINT_ALL(memoryInMB, f);
}
// benchmark. for CPU, op time means calc duration; for others, op time means schedule duration.
int runTime = 0;
if (argc > 5) {
runTime = ::atoi(argv[5]);
}
if (runTime > 0) {
int t = runTime;
std::vector<float> times(t, 0.0f);
if (runMask & 4) {
_initTimeTrace();
}
for (int i = 0; i < t; ++i) {
Timer _l;
auto out = net->onForward(inputs);
Variable::compute(out);
for (auto o : out) {
((MNN::Tensor*)o->getTensor())->wait(MNN::Tensor::MAP_TENSOR_READ, true);
}
times[i] = _l.durationInUs() / 1000.0f;
if (freq > 0.0f) {
float remainMs = (1000.0f / freq) - times[i];
if (remainMs > 0.0f) {
std::this_thread::sleep_for(std::chrono::milliseconds((int)remainMs));
}
}
}
if (nullptr != gTimeTraceInfo) {
float opSummer = 0.0f;
float opFlopsSummber = 0.0f;
for (auto& iter : gTimeTraceInfo->mTypes) {
float summer = 0.0f;
float summerflops = 0.0f;
for (auto& t : iter.second) {
for (auto& t0 : t.second) {
summer += t0.first;
summerflops += t0.second;
}
}
summer = summer / (float)t;
summerflops = summerflops / (float)t;
MNN_PRINT("%s : %.7f, FLOP: %.7f, Speed: %.7f GFlops\n", iter.first.c_str(), summer, summerflops, summerflops / summer);
opSummer += summer;
opFlopsSummber+= summerflops;
}
MNN_PRINT("OP Summer: %.7f, Flops: %.7f, Speed: %.7f GFlops\n", opSummer, opFlopsSummber, opFlopsSummber/opSummer);
}
auto minTime = std::min_element(times.begin(), times.end());
auto maxTime = std::max_element(times.begin(), times.end());
float sum = 0.0f;
for (auto time : times) {
sum += time;
}
MNN_PRINT("Avg= %f ms, min= %f ms, max= %f ms\n", sum / (float)t, *minTime, *maxTime);
}
rtmgr->updateCache();
return 0;
}