in source/backend/coreml/execution/CoreMLBinary.cpp [19:232]
ErrorCode CoreMLBinary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() == 2 && outputs.size() == 1);
BinaryOpOperation binaryType;
if (mOp->type() == OpType_BinaryOp) {
binaryType = static_cast<BinaryOpOperation>(mOp->main_as_BinaryOp()->opType());
} else if (mOp->type() == OpType_Eltwise) {
auto elemType = mOp->main_as_Eltwise()->type();
switch (elemType) {
case EltwiseType_PROD:
binaryType = BinaryOpOperation_MUL;
break;
case EltwiseType_SUM:
binaryType = BinaryOpOperation_ADD;
break;
case EltwiseType_SUB:
binaryType = BinaryOpOperation_SUB;
break;
case EltwiseType_MAXIMUM:
binaryType = BinaryOpOperation_MAXIMUM;
break;
}
}
bool oneInput = false;
float constVal = 0.f;
const Tensor* input = nullptr;
if (TensorUtils::getDescribe(inputs[0])->usage == Tensor::InsideDescribe::CONSTANT && 1 == TensorUtils::getRawSize(inputs[0])) {
constVal = inputs[0]->host<float>()[0];
input = inputs[1];
} else if (TensorUtils::getDescribe(inputs[1])->usage == Tensor::InsideDescribe::CONSTANT && 1 == TensorUtils::getRawSize(inputs[1])) {
constVal = inputs[1]->host<float>()[0];
input = inputs[0];
}
switch (binaryType) {
case BinaryOpOperation_ADD:
if (input) {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ADD;
mLayer_->add = mCoreMLBackend->create<CoreML__Specification__AddLayerParams>();
core_ml__specification__add_layer_params__init(mLayer_->add);
mLayer_->add->alpha = constVal;
oneInput = true;
} else {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ADD_BROADCASTABLE;
mLayer_->addbroadcastable = mCoreMLBackend->create<CoreML__Specification__AddBroadcastableLayerParams>();
core_ml__specification__add_broadcastable_layer_params__init(mLayer_->addbroadcastable);
}
break;
case BinaryOpOperation_SUB:
if (input) {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
mLayer_->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
core_ml__specification__activation_params__init(mLayer_->activation);
mLayer_->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_LINEAR;
mLayer_->activation->linear = mCoreMLBackend->create<CoreML__Specification__ActivationLinear>();
core_ml__specification__activation_linear__init(mLayer_->activation->linear);
mLayer_->activation->linear->alpha = 1;
mLayer_->activation->linear->beta = -constVal;
oneInput = true;
} else {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_SUBTRACT_BROADCASTABLE;
mLayer_->subtractbroadcastable = mCoreMLBackend->create<CoreML__Specification__SubtractBroadcastableLayerParams>();
core_ml__specification__subtract_broadcastable_layer_params__init(mLayer_->subtractbroadcastable);
}
break;
case BinaryOpOperation_MUL:
if (input) {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MULTIPLY;
mLayer_->multiply = mCoreMLBackend->create<CoreML__Specification__MultiplyLayerParams>();
core_ml__specification__multiply_layer_params__init(mLayer_->multiply);
mLayer_->multiply->alpha = constVal;
oneInput = true;
} else {
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MULTIPLY_BROADCASTABLE;
mLayer_->multiplybroadcastable = mCoreMLBackend->create<_CoreML__Specification__MultiplyBroadcastableLayerParams>();
core_ml__specification__multiply_broadcastable_layer_params__init(mLayer_->multiplybroadcastable);
}
break;
case BinaryOpOperation_DIV:
case BinaryOpOperation_REALDIV:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_DIVIDE_BROADCASTABLE;
mLayer_->dividebroadcastable = mCoreMLBackend->create<CoreML__Specification__DivideBroadcastableLayerParams>();
core_ml__specification__divide_broadcastable_layer_params__init(mLayer_->dividebroadcastable);
break;
case BinaryOpOperation_POW:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_POW_BROADCASTABLE;
mLayer_->powbroadcastable = mCoreMLBackend->create<CoreML__Specification__PowBroadcastableLayerParams>();
core_ml__specification__pow_broadcastable_layer_params__init(mLayer_->powbroadcastable);
break;
case BinaryOpOperation_MINIMUM:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MIN;
mLayer_->min = mCoreMLBackend->create<CoreML__Specification__MinLayerParams>();
core_ml__specification__min_layer_params__init(mLayer_->min);
break;
case BinaryOpOperation_MAXIMUM:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MAX;
mLayer_->max = mCoreMLBackend->create<CoreML__Specification__MaxLayerParams>();
core_ml__specification__max_layer_params__init(mLayer_->max);
break;
case BinaryOpOperation_GREATER:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
mLayer_->greaterthan = mCoreMLBackend->create<CoreML__Specification__GreaterThanLayerParams>();
core_ml__specification__greater_than_layer_params__init(mLayer_->greaterthan);
if (input) {
mLayer_->greaterthan->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_GREATER_EQUAL:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_EQUAL;
mLayer_->greaterequal = mCoreMLBackend->create<CoreML__Specification__GreaterEqualLayerParams>();
core_ml__specification__greater_equal_layer_params__init(mLayer_->greaterequal);
if (input) {
mLayer_->greaterequal->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_LESS:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_THAN;
mLayer_->lessthan = mCoreMLBackend->create<CoreML__Specification__LessThanLayerParams>();
core_ml__specification__less_than_layer_params__init(mLayer_->lessthan);
if (input) {
mLayer_->lessthan->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_LESS_EQUAL:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_EQUAL;
mLayer_->lessequal = mCoreMLBackend->create<CoreML__Specification__LessEqualLayerParams>();
core_ml__specification__less_equal_layer_params__init(mLayer_->lessequal);
if (input) {
mLayer_->lessequal->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_FLOORDIV:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_FLOOR_DIV_BROADCASTABLE;
mLayer_->floordivbroadcastable = mCoreMLBackend->create<CoreML__Specification__FloorDivBroadcastableLayerParams>();
core_ml__specification__floor_div_broadcastable_layer_params__init(mLayer_->floordivbroadcastable);
break;
case BinaryOpOperation_EQUAL:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_EQUAL;
mLayer_->equal = mCoreMLBackend->create<CoreML__Specification__EqualLayerParams>();
core_ml__specification__equal_layer_params__init(mLayer_->equal);
if (input) {
mLayer_->equal->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_NOTEQUAL:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_NOT_EQUAL;
mLayer_->notequal = mCoreMLBackend->create<CoreML__Specification__NotEqualLayerParams>();
core_ml__specification__not_equal_layer_params__init(mLayer_->notequal);
if (input) {
mLayer_->notequal->alpha = constVal;
oneInput = true;
}
break;
case BinaryOpOperation_MOD:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MOD_BROADCASTABLE;
mLayer_->modbroadcastable = mCoreMLBackend->create<CoreML__Specification__ModBroadcastableLayerParams>();
core_ml__specification__mod_broadcastable_layer_params__init(mLayer_->modbroadcastable);
break;
case BinaryOpOperation_ATAN2:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
mLayer_->atan = mCoreMLBackend->create<CoreML__Specification__AtanLayerParams>();
core_ml__specification__atan_layer_params__init(mLayer_->atan);
break;
case BinaryOpOperation_LOGICALOR:
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LOGICAL_OR;
mLayer_->logicalor = mCoreMLBackend->create<CoreML__Specification__LogicalOrLayerParams>();
core_ml__specification__logical_or_layer_params__init(mLayer_->logicalor);
break;
default:
MNN_ERROR("NPU Binary not support %s\n", MNN::EnumNameBinaryOpOperation(binaryType));
break;
}
std::string binartInputName;
if(oneInput) {
binartInputName = mCoreMLBackend->getTensorName(input);
} else {
binartInputName = mCoreMLBackend->getTensorName(inputs[0]);
}
std::string binaryOutputName = mCoreMLBackend->getTensorName(outputs[0]);
int activationType = 0;
if(mOp->type() == OpType_BinaryOp) {
activationType = mOp->main_as_BinaryOp()->activationType();
}
if (activationType == 1) {
binaryOutputName = binartInputName + "-" + binaryOutputName + "-Relu";
}
if (oneInput) {
setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(input)}, {binaryOutputName});
} else {
setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(inputs[0]), mCoreMLBackend->getTensorName(inputs[1])}, {binaryOutputName});
}
mCoreMLBackend->addLayer(mLayer_);
if (activationType == 1) {
auto reluLayer = mCoreMLBackend->create<CoreML__Specification__NeuralNetworkLayer>();
core_ml__specification__neural_network_layer__init(reluLayer);
mCoreMLBackend->setLayerName(reluLayer, "BinaryRelu");
reluLayer->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
reluLayer->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
core_ml__specification__activation_params__init(reluLayer->activation);
reluLayer->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_RE_LU;
reluLayer->activation->relu = mCoreMLBackend->create<CoreML__Specification__ActivationReLU>();
core_ml__specification__activation_re_lu__init(reluLayer->activation->relu);
setLayerInputsAndOutputs(reluLayer, {binaryOutputName}, {mCoreMLBackend->getTensorName(outputs[0])});
mCoreMLBackend->addLayer(reluLayer);
}
return NO_ERROR;
}