source/backend/cpu/CPUBinary.cpp (202 lines of code) (raw):
//
// CPUBinary.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUBinary.hpp"
#include "CPUBinaryInt8.hpp"
#include "CPUBackend.hpp"
#include "compute/CommonOptFunction.h"
#include "compute/ConvOpt.h"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "core/OpCommonUtils.hpp"
#include "BinaryUtils.hpp"
#include "math/Vec.hpp"
using Vec4 = MNN::Math::Vec<float, 4>;
using Vec4Int = MNN::Math::Vec<int32_t, 4>;
namespace MNN {
ErrorCode CPUBinary::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0DataCount = TensorUtils::getRawSize(inputs[0]);
auto input1DataCount = TensorUtils::getRawSize(inputs[1]);
if (input1DataCount == input0DataCount) {
mNeedBroadcastIndex = -1;
} else if (input0DataCount == 1) {
mNeedBroadcastIndex = 0;
} else {
mNeedBroadcastIndex = 1;
}
mTotalSize = ((CPUBackend*)backend())->getTensorSize(outputs[0]);
if(mActivationType == 1 && outputs[0]->getType().code == halide_type_float) {
mActivationExe.reset(new CPURelu(backend(), 0.0));
mActivationExe->onResize(outputs, outputs);
}
const int threads = static_cast<CPUBackend*>(backend())->threadNumber();
if (static_cast<CPUBackend*>(backend())->getTensorSize(outputs[0], false) < LAUNCH_MULTI_THREADS_WORKLOAD) {
mThreadNum = 1;
mWorkDiv = mTotalSize;
} else {
mThreadNum = threads;
mWorkDiv = UP_DIV(mTotalSize, threads);
}
return NO_ERROR;
}
ErrorCode CPUBinary::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
auto input0Ptr = input->host<uint8_t>();
auto input1Ptr = input1->host<uint8_t>();
auto outputPtr = outputs[0]->host<uint8_t>();
int inpBytes = input->getType().bytes();
int outBytes = output->getType().bytes();
if (halide_type_float == input->getType().code) {
inpBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
}
if (halide_type_float == output->getType().code) {
outBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
}
auto precision = static_cast<CPUBackend*>(backend())->precisionMode();
MNN_CONCURRENCY_BEGIN(tId, mThreadNum) {
int start = tId * mWorkDiv;
int realSize = ALIMIN(mWorkDiv, mTotalSize - start);
if (realSize > 0) {
auto inp0 = input0Ptr + start * inpBytes;
auto inp1 = input1Ptr + start * inpBytes;
if (mNeedBroadcastIndex == 0) {
inp0 = input0Ptr;
} else if (mNeedBroadcastIndex == 1) {
inp1 = input1Ptr;
}
auto out = outputPtr + start * outBytes;
mProc(out, inp0, inp1, realSize, mNeedBroadcastIndex);
if(mActivationType == 1 && output->getType().code == halide_type_int) {
for(int i=0; i<realSize; i++) {
auto val = ((int32_t *)out)[i];
auto res = val > 0 ? val : 0;
((int32_t *)out)[i] = res;
}
}
}
}
MNN_CONCURRENCY_END();
if(mActivationType == 1 && output->getType().code == halide_type_float) {
mActivationExe->onExecute(outputs, outputs);
}
return NO_ERROR;
}
MNNBinaryExecute CPUBinary::selectForFloat(int type) {
auto vecFunction = selectVector<Vec4, 4, float>(type);
if (nullptr != vecFunction) {
return vecFunction;
}
switch (type) {
case BinaryOpOperation_REALDIV:
return execute<float, float, BinaryRealDiv<float, float, float>>;
case BinaryOpOperation_FLOORDIV:
return execute<float, float, BinaryFloorDiv<float, float, float>>;
case BinaryOpOperation_FLOORMOD:
return execute<float, float, BinaryFloorMod<float, float, float>>;
case BinaryOpOperation_NOTEQUAL:
return execute<float, int32_t, BinaryNotEqual<float, float, int32_t>>;
case BinaryOpOperation_POW:
return execute<float, float, BinaryPow<float, float, float>>;
case BinaryOpOperation_ATAN2:
return execute<float, float, BinaryAtan2<float, float, float>>;
case BinaryOpOperation_MOD:
return execute<float, float, BinaryMod<float, float, float>>;
default:
MNN_ASSERT(false);
break;
}
return nullptr;
}
MNNBinaryExecute CPUBinary::selectForInt(int type) {
auto vecFunction = selectVector<Vec4Int, 4, int32_t>(type);
if (nullptr != vecFunction) {
return vecFunction;
}
switch (type) {
case BinaryOpOperation_MUL:
return execute<int32_t, int32_t, BinaryMul<int32_t, int32_t, int32_t>>;
case BinaryOpOperation_REALDIV:
return execute<int32_t, int32_t, BinaryRealDiv<int32_t, int32_t, int32_t>>;
case BinaryOpOperation_FLOORDIV:
return execute<int32_t, int32_t, BinaryFloorDiv<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_FLOORMOD:
return execute<int32_t, int32_t, BinaryFloorMod<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_LOGICALOR:
return execute<int32_t, int32_t, BinaryLogicalOr<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_NOTEQUAL:
return execute<int32_t, int32_t, BinaryNotEqual<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_MOD:
return execute<int32_t, int32_t, BinaryModInt<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_LOGICALXOR:
return execute<int32_t, int32_t, BinaryLogicalXor<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_LEFTSHIFT:
return execute<int32_t, int32_t, BinaryLeftShift<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_RIGHTSHIFT:
return execute<int32_t, int32_t, BinaryRightShift<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_BITWISE_AND:
return execute<int32_t, int32_t, BinaryBitwiseAnd<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_BITWISE_OR:
return execute<int32_t, int32_t, BinaryBitwiseOr<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_BITWISE_XOR:
return execute<int32_t, int32_t, BinaryBitwiseXor<int32_t, int32_t, int32_t>>;
break;
case BinaryOpOperation_POW:
return execute<int32_t, int32_t, BinaryPow<int32_t, int32_t, int32_t>>;
break;
default:
MNN_ERROR("Don't support binary - int compute for type %d\n", type);
MNN_ASSERT(false);
break;
}
return nullptr;
}
class CPUBinaryCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
int32_t type = op->main_as_BinaryOp()->opType();
auto dataType = inputs[0]->getType();
auto core = static_cast<CPUBackend*>(backend)->functions();
auto input0Ptr = inputs[0]->host<uint8_t>();
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
if (CPUBackend::getDataType(inputs[1]) == DataType_DT_INT8 || inputs[1]->getType().bytes() == 1) {
if (CPUBackend::getDataType(outputs[0]) == DataType_DT_INT8 || outputs[0]->getType().bytes() == 1) {
auto func = CPUBinaryInt8::selectForInt8(type);
if (nullptr == func) {
return nullptr;
}
return new CPUBinaryInt8(backend, func, op->main_as_BinaryOp()->activationType());
}
}
}
if (dataType.bits == 32) {
if (dataType.code == halide_type_int) {
auto func = CPUBinary::selectForInt(type);
if (nullptr == func) {
return nullptr;
}
return new CPUBinary(backend, func, op->main_as_BinaryOp()->activationType());
} else if (dataType.code == halide_type_float) {
auto func = core->MNNSelectBinaryFunctionForFloat(type);
if (nullptr == func) {
return nullptr;
}
return new CPUBinary(backend, func, op->main_as_BinaryOp()->activationType());
}
}
MNN_ERROR("CpuBinary: unsupported data type (bits: %d, code: %d)\n",
dataType.bits, dataType.code);
return nullptr;
}
};
REGISTER_CPU_OP_CREATOR(CPUBinaryCreator, OpType_BinaryOp);
} // namespace MNN