source/backend/cpu/CPUInterp.cpp (199 lines of code) (raw):
//
// CPUInterp.cpp
// MNN
//
// Created by MNN on 2018/07/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUInterp.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/CPUResize.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include <math.h>
#include "core/Macro.h"
namespace MNN {
CPUInterp::CPUInterp(Backend *backend, int resizeType,
float widthScale, float heightScale, float widthOffset, float heightOffset)
: CPUResizeCommon(backend),
mResizeType(resizeType),
mWidthScale(widthScale),
mHeightScale(heightScale),
mWidthOffset(widthOffset),
mHeightOffset(heightOffset) {
// nothing to do
}
CPUInterp::~CPUInterp() {
if (mInit && mResizeType == 2) {
backend()->onReleaseBuffer(&mWidthPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mWidthFactor, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightPosition, Backend::STATIC);
backend()->onReleaseBuffer(&mHeightFactor, Backend::STATIC);
}
}
ErrorCode CPUInterp::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto core = static_cast<CPUBackend*>(backend())->functions();
auto channel_input = inputs[0]->channel();
auto plane_in = inputs[0]->width() * inputs[0]->height() * inputs[0]->batch();
auto plane_out = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
auto depth = UP_DIV(channel_input, core->pack);
bool interpInt8 = CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1;
if (!interpInt8) {
switch (mResizeType) {
case 1:
CPUResizeNearestneighborC4<float>(inputs, outputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
break;
case 2:
CPUResizeBilinearC4<float, float>(CPUBilinearSampleC4, CPUBilinearLineC4, inputs, outputs, mWidthPosition.host<int>(),
mWidthFactor.host<float>(), mHeightPosition.host<int>(), mHeightFactor.host<float>(),
mLineBuffer.host<float>(), ((CPUBackend *)backend())->threadNumber(), &mInputQuantZero, &mOutputQuantZero);
break;
case 3:
CPUResizeCubicC4<float>(MNNCubicSampleC4, MNNCubicLineC4, inputs, outputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset, &mInputQuantZero, &mOutputQuantZero, mOutputQuantMIn, mOutputQuantMax);
break;
case 4:
CPUResizeNearestneighborRoundC4<float>(inputs, outputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
break;
default:
return NOT_SUPPORT;
}
return NO_ERROR;
}
// InterpInt8.
std::vector<Tensor *> int8ExeInputs, int8ExeOutputs;
int8ExeInputs = {inputs[0]};
int8ExeOutputs = {outputs[0]};
// Pack
if ((mResizeType == 1 || mResizeType == 2) && (core->pack == 4)) {
MNNPackInt8C2Origin(mInputTemp.get()->host<float>(), inputs[0]->host<float>(), plane_in, depth, plane_in);
int8ExeInputs = {mInputTemp.get()};
int8ExeOutputs = {mOutputTemp.get()};
} else if ((mResizeType == 3 || mResizeType == 4)) {
if (core->pack == 4) {
MNNPackC4Origin(mInputTemp.get()->host<float>(), inputs[0]->host<float>(), plane_in, depth, plane_in);
int8ExeInputs = {mInputTemp.get()};
int8ExeOutputs = {mOutputTemp.get()};
} else if (core->pack == 8) {
MNNPackC2Origin(mInputTemp.get()->host<double>(), inputs[0]->host<double>(), plane_in, depth, plane_in);
int8ExeInputs = {mInputTemp.get()};
int8ExeOutputs = {mOutputTemp.get()};
}
}
// execute interpInt8
switch (mResizeType) {
case 1:
CPUResizeNearestneighborC4<int8_t>(int8ExeInputs, int8ExeOutputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
break;
case 2:
CPUResizeBilinearC4<int8_t, int16_t>(MNNBilinearSampleC8, MNNBilinearLineC8, int8ExeInputs, int8ExeOutputs, mWidthPosition.host<int>(), mWidthFactor.host<float>(), mHeightPosition.host<int>(), mHeightFactor.host<float>(), mLineBuffer.host<int16_t>(), ((CPUBackend *)backend())->threadNumber(), &mInputQuantZero, &mOutputQuantZero);
break;
case 3:
CPUResizeCubicC4<int8_t>(MNNCubicSampleC16, MNNCubicLineC16, int8ExeInputs, int8ExeOutputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset, &mInputQuantZero, &mOutputQuantZero, mOutputQuantMIn, mOutputQuantMax);
break;
case 4:
CPUResizeNearestneighborRoundC4<int8_t>(int8ExeInputs, int8ExeOutputs, mWidthScale, mHeightScale, mWidthOffset, mHeightOffset);
break;
default:
return NOT_SUPPORT;
}
// Unpack
if ((mResizeType == 1 || mResizeType == 2) && (core->pack == 4)) { // pack=8 -> pack=4
MNNUnpackInt8C2Origin(outputs[0]->host<float>(), mOutputTemp.get()->host<float>(), plane_out, depth, plane_out);
} else if ((mResizeType == 3 || mResizeType == 4)) { // pack=16 -> pack=4
if (core->pack == 4) {
MNNUnpackC4Origin(outputs[0]->host<float>(), mOutputTemp.get()->host<float>(), plane_out, depth, plane_out);
} else if (core->pack == 8) {
MNNUnpackC2Origin(outputs[0]->host<double>(), mOutputTemp.get()->host<double>(), plane_out, depth, plane_out);
}
}
return NO_ERROR;
}
ErrorCode CPUInterp::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
const int inW = inputs[0]->width();
const int inH = inputs[0]->height();
const int outW = outputs[0]->width();
const int outH = outputs[0]->height();
int packInt8 = 8;
if (mResizeType == 3 || mResizeType == 4) {
packInt8 = 16;
}
bool useInt8 = (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) && (CPUBackend::getDataType(outputs[0]) == DataType_DT_INT8 || outputs[0]->getType().bytes() == 1);
if (useInt8) {
mInputTemp.reset(Tensor::createDevice<int8_t>({inputs[0]->batch(), inH, inW, UP_DIV(inputs[0]->channel(), packInt8) * packInt8}));
mOutputTemp.reset(Tensor::createDevice<int8_t>({outputs[0]->batch(), outH, outW, UP_DIV(outputs[0]->channel(), packInt8) * packInt8}));
bool allocSucc = backend()->onAcquireBuffer(mInputTemp.get(), Backend::DYNAMIC);
allocSucc = allocSucc && backend()->onAcquireBuffer(mOutputTemp.get(), Backend::DYNAMIC);
if (!allocSucc) {
return OUT_OF_MEMORY;
}
mInputQuantZero = TensorUtils::getQuantInfo(inputs[0])[1];
mOutputQuantZero = TensorUtils::getQuantInfo(outputs[0])[1];
mOutputQuantMIn = TensorUtils::getQuantInfo(outputs[0])[2];
mOutputQuantMax = TensorUtils::getQuantInfo(outputs[0])[3];
}
if (mResizeType != 2) {
if (mInputTemp.get()) {
backend()->onReleaseBuffer(mInputTemp.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mOutputTemp.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
const float xScaling = mWidthScale;
const float yScaling = mHeightScale;
mWidthPosition.buffer().dim[0].extent = 2 * outW;
mWidthPosition.buffer().dimensions = 1;
mWidthPosition.setType(DataType_DT_INT32);
mWidthFactor.buffer().dim[0].extent = outW;
mWidthFactor.buffer().dimensions = 1;
mWidthFactor.setType(DataType_DT_FLOAT);
mHeightPosition.buffer().dim[0].extent = 2 * outH;
mHeightPosition.buffer().dimensions = 1;
mHeightPosition.setType(DataType_DT_INT32);
mHeightFactor.buffer().dim[0].extent = outH;
mHeightFactor.buffer().dimensions = 1;
mHeightFactor.setType(DataType_DT_FLOAT);
bool res = backend()->onAcquireBuffer(&mWidthPosition, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mWidthFactor, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mHeightPosition, Backend::STATIC);
res = res && backend()->onAcquireBuffer(&mHeightFactor, Backend::STATIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto _wPosition = mWidthPosition.host<int>();
auto _wFactor = mWidthFactor.host<float>();
// Compute Line Position
for (int x = 0; x < outW; ++x) {
float srcX = x * xScaling + mWidthOffset;
int x1 = floor(srcX);
float x2Factor = srcX - x1;
_wFactor[x] = x2Factor;
_wPosition[2 * x + 0] = CLAMP(x1, 0, inW - 1);
_wPosition[2 * x + 1] = CLAMP(x1 + 1, 0, inW - 1);
}
auto _hPosition = mHeightPosition.host<int>();
auto _hFactor = mHeightFactor.host<float>();
for (int y = 0; y < outH; ++y) {
float srcY = y * yScaling + mHeightOffset;
int y1 = floor(srcY);
float y2Factor = srcY - y1;
_hFactor[y] = y2Factor;
_hPosition[2 * y + 0] = CLAMP(y1, 0, inH - 1);
_hPosition[2 * y + 1] = CLAMP(y1 + 1, 0, inH - 1);
}
int threadNumber = ((CPUBackend *)backend())->threadNumber();
mLineBuffer.buffer().dim[0].extent = 2 * 4 * outW * threadNumber;
mLineBuffer.buffer().dimensions = 1;
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
mLineBuffer.setType(DataType_DT_INT16);
mLineBuffer.buffer().dim[0].extent = 2 * packInt8 * outW * threadNumber;
} else {
mLineBuffer.setType(DataType_DT_FLOAT);
}
res = backend()->onAcquireBuffer(&mLineBuffer, Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mLineBuffer, Backend::DYNAMIC);
if (mInputTemp.get()) {
backend()->onReleaseBuffer(mInputTemp.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mOutputTemp.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
class CPUInterpCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
auto interp = op->main_as_Interp();
return new CPUInterp(backend, interp->resizeType(),
interp->widthScale(), interp->heightScale(), interp->widthOffset(), interp->heightOffset());
}
};
REGISTER_CPU_OP_CREATOR(CPUInterpCreator, OpType_Interp);
} // namespace MNN