source/backend/cpu/CPUQuantizedAdd.cpp (164 lines of code) (raw):
//
// CPUQuantizedAdd.cpp
// MNN
//
// Created by MNN on 2018/10/18.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUBackend.hpp"
#ifdef MNN_SUPPORT_DEPRECATED_OP
#include "backend/cpu/CPUQuantizedAdd.hpp"
#include "backend/cpu/CPUQuantizationUtils.hpp"
#include "core/Concurrency.h"
#include "core/Macro.h"
namespace MNN {
CPUQuantizedAdd::CPUQuantizedAdd(Backend *backend, const Op *op) : Execution(backend) {
mQuantizedAddParam = op->main_as_QuantizedAdd();
}
ErrorCode CPUQuantizedAdd::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mInput1Offset = -mQuantizedAddParam->input1QuantizedParam()->zeroPoint();
mInput2Offset = -mQuantizedAddParam->input2QuantizedParam()->zeroPoint();
mOutputOffset = mQuantizedAddParam->outputQuantizedParam()->zeroPoint();
const int leftShift = 20;
const double twiceMaxInputScale = 2 * std::max(mQuantizedAddParam->input1QuantizedParam()->scale(),
mQuantizedAddParam->input2QuantizedParam()->scale());
const double realInput1Multiplier = mQuantizedAddParam->input1QuantizedParam()->scale() / twiceMaxInputScale;
const double realInput2Multiplier = mQuantizedAddParam->input2QuantizedParam()->scale() / twiceMaxInputScale;
const double realOutputMultiplier =
twiceMaxInputScale / ((1 << leftShift) * mQuantizedAddParam->outputQuantizedParam()->scale());
QuantizeMultiplierSmallerThanOne(realInput1Multiplier, &mInput1Multiplier, &mInput1Shift);
QuantizeMultiplierSmallerThanOne(realInput2Multiplier, &mInput2Multiplier, &mInput2Shift);
QuantizeMultiplierSmallerThanOne(realOutputMultiplier, &mOutputMultiplier, &mOutputShift);
CalculateActivationRangeUint8(
mQuantizedAddParam->activationType(), mQuantizedAddParam->outputQuantizedParam()->zeroPoint(),
mQuantizedAddParam->outputQuantizedParam()->scale(), &mOutputActivationMin, &mOutputActivationMax);
int kReverseShiftResult1 = -mInput1Shift;
int kReverseShiftResult2 = -mInput2Shift;
int leftShift1 = kReverseShiftResult1 > 0 ? kReverseShiftResult1 : 0;
mRightShift1 = kReverseShiftResult1 > 0 ? 0 : -kReverseShiftResult1;
int leftShift2 = kReverseShiftResult2 > 0 ? kReverseShiftResult2 : 0;
mRightShift2 = kReverseShiftResult2 > 0 ? 0 : -kReverseShiftResult2;
mLeftShiftOut = -mOutputShift > 0 ? -mOutputShift : 0;
mRightShiftOut = -mOutputShift > 0 ? 0 : mOutputShift;
mLeftShiftResult1 = (1 << leftShift) * ((1 << leftShift1));
mLeftShiftResult2 = (1 << leftShift) * ((1 << leftShift2));
MNN_ASSERT(leftShift + leftShift1 == leftShift);
MNN_ASSERT(leftShift + leftShift2 == leftShift);
return NO_ERROR;
}
ErrorCode CPUQuantizedAdd::onExecute(const std::vector<MNN::Tensor *> &inputs,
const std::vector<MNN::Tensor *> &outputs) {
#ifdef MNN_USE_NEON
int16x8_t input1OffsetVec, input2OffsetVec;
int32x4_t outputOffsetVec, outputActivationMinVec, outputActivationMaxVec, leftShiftResult1Vec, leftShiftResult2Vec, input1MultiplierVec, input2MultiplierVec, outputMultiplierVec, leftShiftOutVec, rightShift1Vec, rightShift2Vec;
input1OffsetVec = vdupq_n_s16(mInput1Offset);
input2OffsetVec = vdupq_n_s16(mInput2Offset);
outputOffsetVec = vdupq_n_s32(mOutputOffset);
outputActivationMinVec = vdupq_n_s32(mOutputActivationMin);
outputActivationMaxVec = vdupq_n_s32(mOutputActivationMax);
leftShiftResult1Vec = vdupq_n_s32(mLeftShiftResult1);
leftShiftResult2Vec = vdupq_n_s32(mLeftShiftResult2);
input1MultiplierVec = vdupq_n_s32(mInput1Multiplier);
input2MultiplierVec = vdupq_n_s32(mInput2Multiplier);
outputMultiplierVec = vdupq_n_s32(mOutputMultiplier);
leftShiftOutVec = vdupq_n_s32((1 << mLeftShiftOut));
rightShift1Vec = vdupq_n_s32(-mRightShift1);
rightShift2Vec = vdupq_n_s32(-mRightShift2);
#endif
uint8_t *input1Data = inputs[0]->host<uint8_t>();
uint8_t *input2Data = inputs[1]->host<uint8_t>();
uint8_t *outputData = outputs[0]->host<uint8_t>();
int outputChannels = inputs[0]->channel();
int size = inputs[0]->batch()*inputs[0]->height()*inputs[0]->width()*ROUND_UP(outputChannels, 4);
int threadNumber = std::max(((CPUBackend *)backend())->threadNumber(), 1);
int countUnit = UP_DIV(size, threadNumber);
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
int realDstCount = (int)ALIMIN(size - tId * countUnit, countUnit);
uint8_t *curInput1Data = input1Data + tId * countUnit;
uint8_t *curInput2Data = input2Data + tId * countUnit;
uint8_t *curOutputData = outputData + tId * countUnit;
int i = 0;
#ifdef MNN_USE_NEON
for (; i <= realDstCount - 8; i += 8) {
uint8x8_t input1Uint8 = vld1_u8(curInput1Data);
int16x8_t input1S16 = vreinterpretq_s16_u16(vmovl_u8(input1Uint8));
int16x8_t input1Val = vaddq_s16(input1S16, input1OffsetVec);
uint8x8_t input2Uint8 = vld1_u8(curInput2Data);
int16x8_t input2S16 = vreinterpretq_s16_u16(vmovl_u8(input2Uint8));
int16x8_t input2Val = vaddq_s16(input2S16, input2OffsetVec);
int32x4_t input10 = vmovl_s16(vget_low_s16(input1Val));
int32x4_t input11 = vmovl_s16(vget_high_s16(input1Val));
int32x4_t input20 = vmovl_s16(vget_low_s16(input2Val));
int32x4_t input21 = vmovl_s16(vget_high_s16(input2Val));
int32x4_t shiftedInput1ValVec0 = vmulq_s32(input10, leftShiftResult1Vec);
int32x4_t shiftedInput1ValVec1 = vmulq_s32(input11, leftShiftResult1Vec);
int32x4_t shiftedInput2ValVec0 = vmulq_s32(input20, leftShiftResult2Vec);
int32x4_t shiftedInput2ValVec1 = vmulq_s32(input21, leftShiftResult2Vec);
shiftedInput1ValVec0 = vqrdmulhq_s32(shiftedInput1ValVec0, input1MultiplierVec);
const int32x4_t fixup00 = vshrq_n_s32(vandq_s32(shiftedInput1ValVec0, rightShift1Vec), 31);
const int32x4_t fixedUpX00 = vqaddq_s32(shiftedInput1ValVec0, fixup00);
const int32x4_t scaledInput1ValVec0 = vrshlq_s32(fixedUpX00, rightShift1Vec);
shiftedInput1ValVec1 = vqrdmulhq_s32(shiftedInput1ValVec1, input1MultiplierVec);
const int32x4_t fixup01 = vshrq_n_s32(vandq_s32(shiftedInput1ValVec1, rightShift1Vec), 31);
const int32x4_t fixedUpX01 = vqaddq_s32(shiftedInput1ValVec1, fixup01);
const int32x4_t scaledInput1ValVec1 = vrshlq_s32(fixedUpX01, rightShift1Vec);
shiftedInput2ValVec0 = vqrdmulhq_s32(shiftedInput2ValVec0, input2MultiplierVec);
const int32x4_t fixup20 = vshrq_n_s32(vandq_s32(shiftedInput2ValVec0, rightShift2Vec), 31);
const int32x4_t fixedUpX20 = vqaddq_s32(shiftedInput2ValVec0, fixup20);
const int32x4_t scaledInput2ValVec0 = vrshlq_s32(fixedUpX20, rightShift2Vec);
shiftedInput2ValVec1 = vqrdmulhq_s32(shiftedInput2ValVec1, input2MultiplierVec);
const int32x4_t fixup21 = vshrq_n_s32(vandq_s32(shiftedInput2ValVec1, rightShift2Vec), 31);
const int32x4_t fixedUpX21 = vqaddq_s32(shiftedInput2ValVec1, fixup21);
const int32x4_t scaledInput2ValVec1 = vrshlq_s32(fixedUpX21, rightShift2Vec);
int32x4_t rawSum0 = vaddq_s32(scaledInput1ValVec0, scaledInput2ValVec0);
int32x4_t rawSum1 = vaddq_s32(scaledInput1ValVec1, scaledInput2ValVec1);
rawSum0 = RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum0, leftShiftOutVec), outputMultiplierVec),
mRightShiftOut);
rawSum1 = RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum1, leftShiftOutVec), outputMultiplierVec),
mRightShiftOut);
rawSum0 = vaddq_s32(rawSum0, outputOffsetVec);
rawSum1 = vaddq_s32(rawSum1, outputOffsetVec);
rawSum0 = vmaxq_s32(rawSum0, outputActivationMinVec);
rawSum1 = vmaxq_s32(rawSum1, outputActivationMinVec);
rawSum0 = vminq_s32(rawSum0, outputActivationMaxVec);
rawSum1 = vminq_s32(rawSum1, outputActivationMaxVec);
int16x4_t rawSumS16n0 = vqmovn_s32(rawSum0);
int16x4_t rawSumS16n1 = vqmovn_s32(rawSum1);
int16x8_t resS16 = vcombine_s16(rawSumS16n0, rawSumS16n1);
uint8x8_t resU8n0 = vqmovun_s16(resS16);
vst1_u8(curOutputData, resU8n0);
curInput1Data += 8;
curInput2Data += 8;
curOutputData += 8;
}
curInput1Data -= i;
curInput2Data -= i;
curOutputData -= i;
#endif
for (; i < realDstCount; i++) {
const int32_t input1Val = mInput1Offset + curInput1Data[i];
const int32_t input2Val = mInput2Offset + curInput2Data[i];
const int32_t shiftedInput1Val = input1Val * mLeftShiftResult1;
const int32_t shiftedInput2Val = input2Val * mLeftShiftResult2;
const int32_t scaledInput1Val = RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(shiftedInput1Val, mInput1Multiplier), mRightShift1);
const int32_t scaledInput2Val = RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(shiftedInput2Val, mInput2Multiplier), mRightShift2);
const int32_t rawSum = scaledInput1Val + scaledInput2Val;
const int32_t rawOutput =
RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(rawSum * (1 << mLeftShiftOut), mOutputMultiplier),
mRightShiftOut) + mOutputOffset;
const int32_t clampedOutput = std::min(mOutputActivationMax, std::max(mOutputActivationMin, rawOutput));
curOutputData[i] = static_cast<uint8_t>(clampedOutput);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUQuantizedAddCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUQuantizedAdd(backend, op);
}
};
} // namespace MNN
#endif
namespace MNN {
REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedAddCreator, OpType_QuantizedAdd);
}