source/backend/cpu/CPURaster.cpp (1,109 lines of code) (raw):
//
// CPURaster.cpp
// MNN
//
// Created by MNN on b'2020/04/02'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPURaster.hpp"
#include "compute/CommonOptFunction.h"
#include "CPUTensorConvert.hpp"
#include "math/Vec.hpp"
#include "core/Concurrency.h"
#include "compute/ConvOpt.h"
#include "CPUMatMul.hpp"
#include "CPUUnary.hpp"
#include "CPUBinary.hpp"
#include "core/BufferAllocator.hpp"
#include "CPUResizeCache.hpp"
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
struct ReduceInfo {
int reduceMask[3] = {0, 0, 0};
int reduceNum = 0;
int reduceIndex[3];
int normalIndex[3];
int normalNum = 0;
bool compute(const Tensor::InsideDescribe::Region& slice) {
normalNum = 0;
reduceNum = 0;
for (int i=0; i<3; ++i) {
if (slice.size[i] > 1 && slice.dst.stride[i] == 0) {
reduceMask[i] = 1;
reduceIndex[reduceNum] = i;
reduceNum ++;
} else {
MNN_ASSERT(normalNum < 3);
normalIndex[normalNum] = i;
normalNum++;
}
}
if (0 == reduceNum) {
return false;
}
return true;
}
};
ErrorCode CPURaster::onResize(const std::vector<Tensor *> &____inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(outputs.size() == 1);
auto output = outputs[0];
OpCommonUtils::rasterInputReset(____inputs, outputs[0]);
auto des = TensorUtils::getDescribe(output);
auto outputDes = TensorUtils::getDescribe(output);
mNeedZero = !TensorUtils::regionIsFull(output);
mZeroPoint = 0;
mUseThreads = false;
if (outputDes->quantAttr != nullptr && outputDes->type == DataType_DT_INT8) {
#ifdef MNN_USE_SSE
mZeroPoint = (int)outputDes->quantAttr->zero + 128;
#else
mZeroPoint = (int)outputDes->quantAttr->zero;
#endif
}
mTempInput.clear();
mFastBlit.clear();
mCacheRegions.clear();
mTempOutput = nullptr;
auto midFormat = MNN_DATA_FORMAT_NCHW;
mTempInputCopy.clear();
mFast = false;
auto core = static_cast<CPUBackend*>(backend())->functions();
mSingleConvert.type = 0;
// all_srcFormat == dstFormat == NC4HW4 : Fast Exe
if (outputDes->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
mFast = true;
for (int i=0; i< des->regions.size(); ++i) {
auto& slice = des->regions[i];
if (TensorUtils::getDescribe(slice.origin)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
mFast = false;
break;
}
if (!OpCommonUtils::canBlitFast(slice, output, core->pack, true)) {
mFast = false;
break;
}
}
if (mFast) {
mUseThreads = des->regions.size() > 16 ? true : false;
for (int i=0; i< des->regions.size(); ++i) {
auto& slice = des->regions[i];
if (slice.origin == nullptr) {
continue;
}
Tensor::InsideDescribe::Region newRegion;
OpCommonUtils::turnToPackRegion(slice, newRegion, output, core->pack, true);
mFastBlit.emplace_back(std::make_pair(slice.origin, std::move(newRegion)));
}
return NO_ERROR;
}
}
// srcNum == 1 && srcFormat != dstFormat : Single Convert
if (des->regions.size() == 1) {
OpCommonUtils::turnRegion2Convert(des->regions[0], output, mSingleConvert);
if (mSingleConvert.type > 0) {
mUseThreads = (mSingleConvert.batch * mSingleConvert.channel * mSingleConvert.area > LAUNCH_MULTI_THREADS_WORKLOAD) ? true : false;
return NO_ERROR;
}
}
// Acquire Buffer for temp output
// TODO: optimize it
if (MNN_DATA_FORMAT_NC4HW4 == outputDes->dimensionFormat) {
mTempOutput.reset(new Tensor);
TensorUtils::setupTensorInfo(output, mTempOutput.get(), midFormat);
}
if (nullptr != mTempOutput) {
auto res = backend()->onAcquireBuffer(mTempOutput.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
}
// input is NC4HW4 add Convert
std::vector<Tensor*> forRelease;
TensorUtils::FuseWrap fuseUtils;
for (int i=0; i< des->regions.size(); ++i) {
auto& slice = des->regions[i];
auto origin = slice.origin;
if (nullptr == origin /*|| nullptr == origin->host<void>()*/) {
continue;
}
// if tensor is not NC4HW4 or has been merged, don't need deal
if (TensorUtils::getDescribe(origin)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
if (slice.size[0] * slice.size[1] * slice.size[2] > LAUNCH_MULTI_THREADS_WORKLOAD) {
mUseThreads = true;
}
mTempInputCopy.emplace_back(std::make_pair(origin, &slice));
continue;
}
// if NC4HW4's C%4 == 0, change convert to transpose and fuse it
if (origin->batch() == 1 && origin->channel() % core->pack == 0) {
int channel = origin->channel();
int area = 1;
// conv3d/pool3d will has 5 dims, area = depth * width * height, otherwise area = width * height
for (int d = 2; d < origin->dimensions(); d++) {
area *= origin->length(d);
}
Tensor::InsideDescribe::Region regionTmp;
regionTmp.src.offset = 0;
regionTmp.src.stride[0] = area * core->pack;
regionTmp.src.stride[1] = 1;
regionTmp.src.stride[2] = core->pack;
regionTmp.dst.offset = 0;
regionTmp.dst.stride[0] = area * core->pack;
regionTmp.dst.stride[1] = area;
regionTmp.dst.stride[2] = 1;
regionTmp.size[0] = channel / core->pack;
regionTmp.size[1] = core->pack;
regionTmp.size[2] = area;
regionTmp.origin = slice.origin;
bool merge = fuseUtils.match(regionTmp, slice);
if (merge) {
std::shared_ptr<Tensor::InsideDescribe::Region> newSlice(new Tensor::InsideDescribe::Region);
*newSlice = slice;
fuseUtils.apply(regionTmp, *newSlice);
// cache the merged tensor
if (newSlice->size[0] * newSlice->size[1] * newSlice->size[2] > LAUNCH_MULTI_THREADS_WORKLOAD) {
mUseThreads = true;
}
mTempInputCopy.emplace_back(std::make_pair(origin, newSlice.get()));
mCacheRegions.emplace_back(newSlice);
continue;
}
}
auto cache = static_cast<CPUBackend*>(backend())->getCache();
auto tempTensor = cache->findCacheTensor(origin, midFormat);
//MNN_ASSERT(CPUBackend::getBytes(backend(), origin) == 4);
if (nullptr == tempTensor) {
std::shared_ptr<Tensor> newTensor(new Tensor);
TensorUtils::copyShape(origin, newTensor.get());
TensorUtils::getDescribe(newTensor.get())->dimensionFormat = midFormat;
TensorUtils::getDescribe(newTensor.get())->quantAttr = TensorUtils::getDescribe(origin)->quantAttr;
newTensor->buffer().type = origin->getType();
TensorUtils::setLinearLayout(newTensor.get());
mTempInput.insert(std::make_pair(origin, newTensor.get()));
auto res = backend()->onAcquireBuffer(newTensor.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
tempTensor = newTensor.get();
TensorUtils::getDescribe(tempTensor)->useCount = TensorUtils::getDescribe(origin)->useCount;
cache->pushCacheTensor(newTensor, origin, midFormat);
}
if (--TensorUtils::getDescribe(tempTensor)->useCount == 0) {
forRelease.emplace_back(tempTensor);
}
if (slice.size[0] * slice.size[1] * slice.size[2] > LAUNCH_MULTI_THREADS_WORKLOAD) {
mUseThreads = true;
}
mTempInputCopy.emplace_back(std::make_pair(tempTensor, &slice));
}
for (auto t : forRelease) {
backend()->onReleaseBuffer(t, Backend::DYNAMIC);
}
if (nullptr != mTempOutput) {
backend()->onReleaseBuffer(mTempOutput.get(), Backend::DYNAMIC);
}
auto threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
mHasReduce = false;
ReduceInfo reduceInfo;
for (auto& iter : mTempInputCopy) {
if (reduceInfo.compute(*iter.second)) {
mHasReduce = true;
break;
}
}
if (mTempInputCopy.size() == 1 && threadNumber > 1 && (!mHasReduce)) {
// Split to multi region
auto region = mTempInputCopy[0].second;
if (region->size[0] * region->size[1] * region->size[2] < LAUNCH_MULTI_THREADS_WORKLOAD) {
mUseThreads = false;
return NO_ERROR;
}
if (region->size[0] * region->size[1] * region->size[2] > LAUNCH_MULTI_THREADS_WORKLOAD) {
mUseThreads = true;
}
auto tensorPtr = mTempInputCopy[0].first;
int pos = -1;
for (int i=0; i<3; ++i) {
if (region->size[i] > 1) {
pos = i;
break;
}
}
if (-1 == pos) {
// Don't need divide
return NO_ERROR;
}
mTempInputCopy.clear();
int divSize = UP_DIV(region->size[pos], threadNumber);
for (int i=0; i<threadNumber; ++i) {
std::shared_ptr<Tensor::InsideDescribe::Region> cacheRegPtr(new Tensor::InsideDescribe::Region);
auto& cacheReg = *cacheRegPtr;
int sta = i * divSize;
int fin = sta + divSize;
fin = std::min(fin, region->size[pos]);
if (fin <= sta) {
break;
}
for (int v=0; v<3; ++v) {
cacheReg.src.stride[v] = region->src.stride[v];
cacheReg.dst.stride[v] = region->dst.stride[v];
}
int curSize = fin - sta;
for (int v=0; v<pos; ++v) {
cacheReg.size[v] = region->size[v];
}
cacheReg.size[pos] = curSize;
cacheReg.src.offset = region->src.offset + sta * region->src.stride[pos];
cacheReg.dst.offset = region->dst.offset + sta * region->dst.stride[pos];
for (int v=pos+1; v<3; ++v) {
cacheReg.size[v] = region->size[v];
}
mTempInputCopy.emplace_back(std::make_pair(tensorPtr, cacheRegPtr.get()));
mCacheRegions.emplace_back(cacheRegPtr);
}
}
return NO_ERROR;
}
static void _transpose(int32_t* dstO, const int32_t* srcO, const Tensor::InsideDescribe::Region& region, int bytes) {
int dims[4], keepDim = -1;
for (int i = 0; i < 3; i++) {
if (region.src.stride[i] == 1 && region.size[i] != 1) {
dims[1] = region.size[i];
dims[3] = region.dst.stride[i];
}else if (region.dst.stride[i] == 1 && region.size[i] != 1) {
dims[0] = region.size[i];
dims[2] = region.src.stride[i];
} else {
keepDim = i;
}
}
if (bytes == 4) {
for (int z=0; z<region.size[keepDim]; ++z) {
auto srcZ = srcO + region.src.stride[keepDim] * z;
auto dstZ = dstO + region.dst.stride[keepDim] * z;
MNNTranspose32Bit(dstZ, srcZ, dims);
}
return;
}
if (bytes == 2) {
auto srcH = reinterpret_cast<const int16_t*>(srcO);
auto dstH = reinterpret_cast<int16_t*>(dstO);
for (int z = 0; z < region.size[keepDim]; ++z) {
auto srcZ = srcH + region.src.stride[keepDim] * z;
auto dstZ = dstH + region.dst.stride[keepDim] * z;
MNNTranspose16Bit(dstZ, srcZ, dims);
}
return;
}
}
typedef void (*BlitProc)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds);
static void _4BitcopyWithStrideC4(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) {
auto src = (float*)srcO;
auto dst = (float*)dstO;
for (int i=0; i<size; ++i) {
Vec4::save(dst, Vec4::load(src));
src+= (4 * stride);
dst+= (4 * ds);
}
}
static void _2BitcopyWithStrideC4(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) {
auto src = (uint64_t*)srcO;
auto dst = (uint64_t*)dstO;
for (int i=0; i<size; ++i) {
*dst = *src;
src+=stride;
dst+=ds;
}
}
void CPURaster::executeFaster(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) const {
auto input = inputs[0];
auto output = outputs[0];
auto bytes = CPUBackend::getBytes(backend(), output);
auto core = static_cast<const CPUBackend*>(backend())->functions();
auto threadNum = static_cast<CPUBackend*>(backend())->threadNumber();
if (mNeedZero) {
::memset(output->host<void>(), mZeroPoint, static_cast<CPUBackend*>(backend())->getTensorSize(output) * bytes);
}
auto byteC4 = bytes * core->pack;
auto C4proc = core->MNN4BitcopyWithStride;
switch (byteC4) {
case 16:
C4proc = _4BitcopyWithStrideC4;
break;
case 8:
C4proc = _2BitcopyWithStrideC4;
break;
case 4:
C4proc = core->MNN4BitcopyWithStride;
break;
default:
C4proc = core->MNNSelectBlitFunction(byteC4);
break;
}
if (!mUseThreads) {
threadNum = 1;
}
MNN_CONCURRENCY_BEGIN(tId, threadNum) {
for (int u=(int)tId; u<mFastBlit.size(); u+=threadNum) {
auto& iter = mFastBlit[u];
auto& slice = iter.second;
//Offset use byte
auto srcPtr = iter.first->host<uint8_t>() + slice.src.offset * bytes;
auto dstPtr = output->host<uint8_t>() + slice.dst.offset * bytes;
if (slice.src.stride[1] == slice.size[2] && slice.dst.stride[1] == slice.size[2] && slice.src.stride[2] == 1) {
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * byteC4;
auto dstZ = dstPtr + z * slice.dst.stride[0] * byteC4;
::memcpy(dstZ, srcZ, slice.size[1] * slice.src.stride[1] * byteC4);
}
continue;
}
if (1 == slice.src.stride[2] && 1 == slice.dst.stride[2]) {
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * byteC4;
auto dstZ = dstPtr + z * slice.dst.stride[0] * byteC4;
for (int y=0; y<slice.size[1]; ++y) {
auto srcY = srcZ + y * slice.src.stride[1] * byteC4;
auto dstY = dstZ + y * slice.dst.stride[1] * byteC4;
::memcpy(dstY, srcY, slice.size[2] * byteC4);
}
}
continue;
}
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * byteC4;
auto dstZ = dstPtr + z * slice.dst.stride[0] * byteC4;
for (int y=0; y<slice.size[1]; ++y) {
auto srcY = srcZ + y * slice.src.stride[1] * byteC4;
auto dstY = dstZ + y * slice.dst.stride[1] * byteC4;
C4proc(dstY, srcY, slice.size[2], slice.src.stride[2], slice.dst.stride[2]);
}
}
}
}
MNN_CONCURRENCY_END();
}
static BlitProc _selectUnitProc(int bytes, int stride, int ds) {
auto core = MNNGetCoreFunctions();
auto proc = core->MNN1BitcopyFast;
switch (bytes) {
case 4:
if (ds == 1 && (stride == 1 || stride == 0)) {
proc = core->MNN4BitcopyFast;
} else {
proc = core->MNN4BitcopyWithStride;
}
break;
case 2:
if (ds == 1 && (stride == 1 || stride == 0)) {
proc = core->MNN2BitcopyFast;
} else {
proc = core->MNN2BitcopyWithStride;
}
break;
case 1:
if (ds == 1 && (stride == 1 || stride == 0)) {
proc = core->MNN1BitcopyFast;
} else {
proc = core->MNN1BitcopyWithStride;
}
break;
default:
MNN_ASSERT(false);
break;
}
return proc;
}
static void _zero(const Tensor::InsideDescribe::Region& slice, int bytes, uint8_t* dstPtr) {
for (int z=0; z<slice.size[0]; ++z) {
auto dstZ = dstPtr + (z) * slice.dst.stride[0] * bytes;
for (int y=0; y<slice.size[1]; ++y) {
auto dstY = dstZ + y * slice.dst.stride[1] * bytes;
::memset(dstY, 0, slice.size[2] * bytes);
}
}
}
static bool _reduceblit(const Tensor::InsideDescribe::Region& slice, int bytes, const uint8_t* srcPtr, uint8_t* dstPtr) {
ReduceInfo reduceInfo;
reduceInfo.compute(slice);
auto normalIndex = reduceInfo.normalIndex;
auto reduceIndex = reduceInfo.reduceIndex;
switch (reduceInfo.reduceNum) {
case 3:
{
float summer = 0.0f;
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * bytes;
for (int y=0; y<slice.size[1]; ++y) {
auto srcY = srcZ + y * slice.src.stride[1] * bytes;
auto S = (float*)srcY;
for (int x=0; x<slice.size[2]; ++x) {
summer += S[slice.src.stride[2] * x];
}
}
}
((float*)dstPtr)[0] = summer;
return true;
}
case 2:
{
int sizeZ = slice.size[normalIndex[0]];
int srcStrideZ = slice.src.stride[normalIndex[0]];
int dstStrideZ = slice.dst.stride[normalIndex[0]];
int sizeY = slice.size[reduceIndex[0]];
int srcStrideY = slice.src.stride[reduceIndex[0]];
int dstStrideY = slice.dst.stride[reduceIndex[0]];
int sizeX = slice.size[reduceIndex[1]];
int srcStrideX = slice.src.stride[reduceIndex[1]];
int dstStrideX = slice.dst.stride[reduceIndex[1]];
for (int z=0; z<sizeZ; ++z) {
float summer = 0.0f;
auto srcZ = srcPtr + z * srcStrideZ * bytes;
auto dstZ = dstPtr + z * dstStrideZ * bytes;
for (int y=0; y<sizeY; ++y) {
auto srcY = srcZ + y * srcStrideY * bytes;
auto S = (float*)srcY;
for (int x=0; x<sizeX; ++x) {
summer += S[srcStrideX * x];
}
}
((float*)dstZ)[0] = summer;
}
return true;
}
case 1:
{
int sizeZ = slice.size[normalIndex[0]];
int srcStrideZ = slice.src.stride[normalIndex[0]];
int dstStrideZ = slice.dst.stride[normalIndex[0]];
int sizeY = slice.size[normalIndex[1]];
int srcStrideY = slice.src.stride[normalIndex[1]];
int dstStrideY = slice.dst.stride[normalIndex[1]];
int sizeX = slice.size[reduceIndex[0]];
int srcStrideX = slice.src.stride[reduceIndex[0]];
int dstStrideX = slice.dst.stride[reduceIndex[0]];
for (int z=0; z<sizeZ; ++z) {
auto srcZ = srcPtr + z * srcStrideZ * bytes;
auto dstZ = dstPtr + z * dstStrideZ * bytes;
for (int y=0; y<sizeY; ++y) {
float summer = 0.0f;
auto srcY = srcZ + y * srcStrideY * bytes;
auto dstY = dstZ + y * dstStrideY * bytes;
auto S = (float*)srcY;
for (int x=0; x<sizeX; ++x) {
summer += S[srcStrideX * x];
}
((float*)dstY)[0] = summer;
}
}
return true;
}
default:
break;
}
return false;
}
static void _blit(const Tensor::InsideDescribe::Region& slice, int bytes, const uint8_t* srcPtr, uint8_t* dstPtr, bool hasReduce) {
auto proc = _selectUnitProc(bytes, slice.src.stride[2], slice.dst.stride[2]);
if (hasReduce) {
if (_reduceblit(slice, bytes, srcPtr, dstPtr)) {
return;
}
}
if (slice.src.stride[1] == slice.size[2] && slice.dst.stride[1] == slice.size[2] && slice.src.stride[2] == 1) {
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * bytes;
auto dstZ = dstPtr + z * slice.dst.stride[0] * bytes;
#ifdef DEBUG
::memset(dstZ, 0, slice.size[1] * slice.src.stride[1] * bytes);
#endif
::memcpy(dstZ, srcZ, slice.size[1] * slice.src.stride[1] * bytes);
}
return;
}
int srcOne, dstOne;
if (OpCommonUtils::isTranspose(slice, srcOne, dstOne) && (4 == bytes || 2 == bytes)) {
// if (OpCommonUtils::isTranspose(slice, srcOne, dstOne) && 4 == bytes) {
_transpose((int32_t*)dstPtr, (const int32_t*)srcPtr, slice, bytes);
return;
}
if (1 == slice.src.stride[2] && 1 == slice.dst.stride[2]) {
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * bytes;
auto dstZ = dstPtr + z * slice.dst.stride[0] * bytes;
for (int y=0; y<slice.size[1]; ++y) {
auto srcY = srcZ + y * slice.src.stride[1] * bytes;
auto dstY = dstZ + y * slice.dst.stride[1] * bytes;
::memcpy(dstY, srcY, slice.size[2] * bytes);
}
}
return;
}
for (int z=0; z<slice.size[0]; ++z) {
auto srcZ = srcPtr + z * slice.src.stride[0] * bytes;
auto dstZ = dstPtr + z * slice.dst.stride[0] * bytes;
for (int y=0; y<slice.size[1]; ++y) {
auto srcY = srcZ + y * slice.src.stride[1] * bytes;
auto dstY = dstZ + y * slice.dst.stride[1] * bytes;
proc(dstY, srcY, slice.size[2], slice.src.stride[2], slice.dst.stride[2]);
}
}
}
void CPURaster::tensorConvert(Tensor* input, Tensor* output, int bytes) {
auto& subIb = input->buffer();
auto& subOb = output->buffer();
auto source = TensorUtils::getDescribe(input)->dimensionFormat;
auto dest = TensorUtils::getDescribe(output)->dimensionFormat;
if (subIb.dimensions <= 1 || source == dest) {
::memcpy(subOb.host, subIb.host, input->elementSize() * bytes);
return;
}
auto tup = CPUTensorConverter::splitDimensions(subIb, source);
int area = std::get<1>(tup), batch = std::get<0>(tup), channel = std::get<2>(tup);
const int bitLength = bytes;
auto core = static_cast<CPUBackend*>(backend())->functions();
auto threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
if (!mUseThreads) {
threadNumber = 1;
}
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
CPUTensorConverter::convert(subIb.host, subOb.host, source, dest, batch, area, channel, bitLength, core, tId, threadNumber);
};
MNN_CONCURRENCY_END();
}
ErrorCode CPURaster::onExecute(const std::vector<Tensor *> &____inputs, const std::vector<Tensor *> &outputs) {
void* mOutputPtr = nullptr;
if (nullptr != mTempOutput) {
mOutputPtr = mTempOutput->host<void>();
} else {
mOutputPtr = outputs[0]->host<void>();
}
if (mFast) {
executeFaster(____inputs, outputs);
return NO_ERROR;
}
auto core = static_cast<CPUBackend*>(backend())->functions();
auto output = outputs[0];
auto bytes = CPUBackend::getBytes(backend(), output);
auto outputEleSize = static_cast<CPUBackend*>(backend())->getTensorSize(output);
auto threadNum = static_cast<CPUBackend*>(backend())->threadNumber();
if (mSingleConvert.type > 0) {
auto realInput = ____inputs[0];
int srcBatch = mSingleConvert.batch, srcChannel = mSingleConvert.channel, srcArea = mSingleConvert.area;
auto sourceFormat = TensorUtils::getDescribe(realInput)->dimensionFormat;
auto destFormat = TensorUtils::getDescribe(output)->dimensionFormat;
auto channelC4 = UP_DIV(srcChannel, core->pack);
int batchStrideC4 = channelC4 * core->pack * srcArea * bytes;
int batchStride = srcChannel * srcArea * bytes;
int inputBatchStride = batchStride;
int outputBatchStride = batchStride;
if (MNN_DATA_FORMAT_NC4HW4 == sourceFormat) {
if (realInput->dimensions() <= 1) {
::memcpy(output->host<uint8_t>(), realInput->host<uint8_t>(), realInput->elementSize() * bytes);
return NO_ERROR;
}
inputBatchStride = batchStrideC4;
if (2 == mSingleConvert.type) {
destFormat = MNN_DATA_FORMAT_NHWC;
} else {
destFormat = MNN_DATA_FORMAT_NCHW;
}
} else if (MNN_DATA_FORMAT_NC4HW4 == destFormat) {
if (output->dimensions() <= 1) {
::memcpy(output->host<uint8_t>(), realInput->host<uint8_t>(), realInput->elementSize() * bytes);
return NO_ERROR;
}
outputBatchStride = batchStrideC4;
if (2 == mSingleConvert.type) {
sourceFormat = MNN_DATA_FORMAT_NHWC;
} else {
sourceFormat = MNN_DATA_FORMAT_NCHW;
}
}
if (!mUseThreads) {
threadNum = 1;
}
MNN_CONCURRENCY_BEGIN(tId, threadNum) {
CPUTensorConverter::convert(realInput->host<uint8_t>(), output->host<uint8_t>(), sourceFormat, destFormat, srcBatch, srcArea, srcChannel, bytes, core, tId, threadNum);
};
MNN_CONCURRENCY_END();
return NO_ERROR;
}
if (mNeedZero) {
if (mTempOutput == nullptr) {
::memset(output->host<void>(), mZeroPoint, outputEleSize * bytes);
} else {
::memset(mTempOutput->host<void>(), mZeroPoint, mTempOutput->elementSize() * bytes);
}
}
for (auto& iter : mTempInput) {
tensorConvert(iter.first, iter.second, bytes);
}
if (mHasReduce) {
// Don't support reduce with multi thread now
threadNum = 1;
}
if (!mUseThreads) {
threadNum = 1;
}
MNN_CONCURRENCY_BEGIN(tId, threadNum) {
for (int u=tId; u<mTempInputCopy.size(); u+=threadNum) {
auto& iter = mTempInputCopy[u];
auto& slice = *(iter.second);
auto srcPtr = iter.first->host<uint8_t>() + slice.src.offset * bytes;
auto dstPtr = (uint8_t*)mOutputPtr + slice.dst.offset * bytes;
_blit(slice, bytes, srcPtr, dstPtr, mHasReduce);
}
}
MNN_CONCURRENCY_END();
if (nullptr != mTempOutput) {
tensorConvert(mTempOutput.get(), output, bytes);
}
return NO_ERROR;
}
class CPULoop : public Execution {
public:
struct ThreadContainer {
std::vector<std::shared_ptr<Execution>> exe;
std::vector<uint8_t*> stackPtr;
};
CPULoop(Backend* bn, const LoopParam* loop) : Execution(bn) {
// The LoopParam is created by geometry, won't be released
mLoop = loop;
mStack.resize(loop->tensorNumber());
int numberThread = mLoop->parallel() ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
mContainer.resize(numberThread);
for (int i=0; i<numberThread; ++i) {
mContainer[i].stackPtr.resize(mLoop->tensorNumber());
mContainer[i].exe.resize(mLoop->commands()->size());
}
}
virtual ~ CPULoop() {
// Do nothing
}
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
int inputIndexSize = mLoop->inputIndexes()->size();
MNN_ASSERT(inputIndexSize == inputs.size());
for (int i=0; i<inputIndexSize; ++i) {
mStack[mLoop->inputIndexes()->data()[i]] = inputs[i];
}
int outputIndexSize = mLoop->outputIndexes()->size();
MNN_ASSERT(outputIndexSize == outputs.size());
for (int i=0; i<outputIndexSize; ++i) {
mStack[mLoop->outputIndexes()->data()[i]] = outputs[i];
}
int numberThread = mLoop->parallel() ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
mMaxCacheSize = 0;
auto bytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
mMaxFuseBufferSize = 0;
for (int i=0; i<mLoop->commands()->size(); ++i) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(i);
auto op = cmd->op();
if (cmd->fuse() >= 0) {
// Make Temp output buffer
auto size = cmd->size()->data();
if (cmd->op()->type() == OpType_MatMul) {
mMaxFuseBufferSize = std::max(mMaxFuseBufferSize, bytes * size[0] * size[2]);
} else {
mMaxFuseBufferSize = std::max(mMaxFuseBufferSize, bytes * size[0] * size[1] * size[2]);
}
}
if (OpType_UnaryOp == op->type()) {
if (nullptr != op->main_as_UnaryOp()) {
auto view0 = cmd->view()->GetAs<View>(0);
auto view1 = cmd->view()->GetAs<View>(1);
MNN_ASSERT(view0->stride()->data()[2] == 1 || cmd->fuse() >= 0);
if (view1->stride()->data()[2] != 1) {
mMaxCacheSize = std::max(mMaxCacheSize, cmd->size()->data()[2] * bytes);
}
}
continue;
}
if (OpType_BinaryOp == op->type()) {
auto view0 = cmd->view()->GetAs<View>(0);
auto view1 = cmd->view()->GetAs<View>(1);
auto view2 = cmd->view()->GetAs<View>(2);
MNN_ASSERT(view0->stride()->data()[2] == 1 || cmd->fuse() >= 0);
if (view1->stride()->data()[2] != 1 || view2->stride()->data()[2] != 1) {
mMaxCacheSize = std::max(mMaxCacheSize, 2 * cmd->size()->data()[2] * bytes);
}
continue;
}
if (OpType_MatMul == op->type()) {
bool transposeC = true;
int e = cmd->size()->data()[0];
int l = cmd->size()->data()[1];
int h = cmd->size()->data()[2];
std::shared_ptr<Tensor> A, B, C, Bias;
C.reset(Tensor::createDevice<float>({e, h}));
if (op->main_as_MatMul()->transposeA()) {
A.reset(Tensor::createDevice<float>({l, e}));
} else {
A.reset(Tensor::createDevice<float>({e, l}));
}
if (op->main_as_MatMul()->transposeB()) {
B.reset(Tensor::createDevice<float>({h, l}));
} else {
B.reset(Tensor::createDevice<float>({l, h}));
}
auto view = cmd->view()->GetAs<View>(0);
if (view->stride()->data()[0] == 1) {
transposeC = false;
}
std::vector<Tensor*> inputs, outputs;
if (cmd->indexes()->size() > 3) {
Bias.reset(Tensor::createDevice<float>({h}));
inputs = {A.get(), B.get(), Bias.get()};
} else {
inputs = {A.get(), B.get()};
}
outputs = {C.get()};
auto bufferPool = static_cast<CPUBackend*>(backend())->getBufferAllocator();
auto code = NO_ERROR;
if (numberThread > 1) {
bufferPool->barrierBegin();
}
for (int v=0; v<numberThread; ++v) {
if (numberThread > 1) {
bufferPool->beginGroup();
}
do {
// If not loop parallel, parallel inside
bool needParallel = numberThread == 1;
mContainer[v].exe[i].reset(new CPUMatMul(backend(), op->main_as_MatMul()->transposeA(), op->main_as_MatMul()->transposeB(), transposeC, needParallel));
if (nullptr == mContainer[v].exe[i]) {
code = OUT_OF_MEMORY;
break;
}
code = mContainer[v].exe[i]->onResize(inputs, outputs);
} while (false);
if (numberThread > 1) {
bufferPool->endGroup();
}
if (NO_ERROR != code) {
break;
}
}
if (numberThread > 1) {
bufferPool->barrierEnd();
}
if (NO_ERROR != code) {
return code;
}
continue;
}
}
auto threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
if (mMaxCacheSize > 0 || mMaxFuseBufferSize > 0) {
mCacheBuffer = static_cast<CPUBackend*>(backend())->getBufferAllocator()->alloc(threadNumber * (mMaxCacheSize + mMaxFuseBufferSize));
if (mCacheBuffer.invalid()) {
return OUT_OF_MEMORY;
}
mFuseBuffer = mCacheBuffer + threadNumber * mMaxCacheSize;
static_cast<CPUBackend*>(backend())->getBufferAllocator()->free(mCacheBuffer);
}
return NO_ERROR;
}
virtual ErrorCode onExecute(const std::vector<Tensor *> &originInputs, const std::vector<Tensor *> &originOutputs) override {
auto cpubackend = static_cast<CPUBackend*>(backend());
auto precision = cpubackend->precisionMode();
auto threadNumber = cpubackend->threadNumber();
if (mLoop->initCommand() != nullptr) {
for (int i=0; i<mLoop->initCommand()->size(); ++i) {
auto cmd = mLoop->initCommand()->GetAs<RegionCommand>(i);
if (cmd->op() == nullptr) {
auto output = mStack[cmd->indexes()->data()[0]];
::memset(output->host<void>(), 0, cpubackend->getTensorSize(output) * cpubackend->functions()->bytes);
} else {
Tensor::InsideDescribe::Region reg;
auto srcView = cmd->view()->GetAs<View>(1);
auto dstView = cmd->view()->GetAs<View>(0);
::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
::memcpy(reg.dst.stride, dstView->stride()->data(), 3 * sizeof(int32_t));
auto input = mStack[cmd->indexes()->data()[1]];
auto inputSize = input->elementSize();
auto output = mStack[cmd->indexes()->data()[0]];
auto bytes = input->getType().bytes();
if (halide_type_float == input->getType().code) {
bytes = cpubackend->functions()->bytes;
}
_blit(reg, bytes, input->host<uint8_t>(), output->host<uint8_t>(), false);
}
}
}
if (1 == mLoop->commands()->size()) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
auto op = cmd->op();
if (OpType_UnaryOp == op->type() && nullptr == op->main() && cmd->fuse() < 0) {
// For Gather / Single Unary
auto index0 = cmd->iterIndexes()->data()[0];
auto index1 = cmd->iterIndexes()->data()[1];
int32_t iter = 0;
int32_t* iter0 = &iter;
int32_t* iter1 = &iter;
int32_t iter0Stride = 0;
int32_t iter1Stride = 0;
if (index0 >= 0) {
iter0 = originInputs[index0]->host<int32_t>();
iter0Stride = 1;
}
if (index1 >= 0) {
iter1 = originInputs[index1]->host<int32_t>();
iter1Stride = 1;
}
Tensor::InsideDescribe::Region reg;
auto srcView = cmd->view()->GetAs<View>(1);
auto dstView = cmd->view()->GetAs<View>(0);
::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
::memcpy(reg.dst.stride, dstView->stride()->data(), 3 * sizeof(int32_t));
auto input = mStack[cmd->indexes()->data()[1]];
auto inputSize = input->usize() / input->buffer().type.bytes();
auto output = mStack[cmd->indexes()->data()[0]];
auto outputSize = output->usize() / output->buffer().type.bytes();
auto bytes = input->getType().bytes();
if (halide_type_float == input->getType().code) {
bytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
}
auto step0 = cmd->steps()->data()[0];
auto step1 = cmd->steps()->data()[1];
auto loopNumber = mLoop->loopNumber();
for (; iter<loopNumber; ++iter) {
auto srcIter = *(iter1 + iter1Stride * iter);
auto dstIter = *(iter0 + iter0Stride * iter);
auto srcOffset = srcIter * step1 + srcView->offset();
auto dstOffset = dstIter * step0 + dstView->offset();
if (dstOffset >= 0 && dstOffset < outputSize) {
if (srcOffset >= 0 && srcOffset < inputSize) {
_blit(reg, bytes, input->host<uint8_t>() + bytes * srcOffset, output->host<uint8_t>() + bytes * dstOffset, false);
} else {
_zero(reg, bytes, output->host<uint8_t>() + bytes * dstOffset);
}
}
}
return NO_ERROR;
}
}
auto bytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
auto func = [&](int iter, int tId) {
int fuseOutputStride[3];
const int32_t* outputStride = nullptr;
auto fuseBuffer = mFuseBuffer + mMaxFuseBufferSize * tId;
for (int index=0; index<mLoop->commands()->size(); ++index) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(index);
auto blit = _selectUnitProc(bytes, cmd->view()->GetAs<View>(1)->stride()->data()[2], 1);
auto op = cmd->op();
int iterIndexsize = cmd->iterIndexes()->size();
if (cmd->fuse() >= 0) {
outputStride = fuseOutputStride;
auto cmdSize = cmd->size()->data();
fuseOutputStride[0] = cmdSize[1] * cmdSize[2];
fuseOutputStride[1] = cmdSize[2];
fuseOutputStride[2] = 1;
} else {
// Loop Op's command's first index must be output
outputStride = cmd->view()->GetAs<View>(0)->stride()->data();
}
halide_type_t inputType;
for (int v=0; v<iterIndexsize; ++v) {
auto tensorIndex = cmd->indexes()->data()[v];
auto tensor = mStack[tensorIndex];
auto iterIndex = cmd->iterIndexes()->data()[v];
auto offset = iter;
if (1 == v) {
inputType = tensor->getType();
}
if (iterIndex >= 0) {
offset = mStack[iterIndex]->host<int32_t>()[iter];
}
auto view = cmd->view()->GetAs<View>(v);
offset = offset * cmd->steps()->data()[v] + view->offset();
mContainer[tId].stackPtr[tensorIndex] = tensor->host<uint8_t>() + offset * bytes;
MNN_ASSERT(nullptr != tensor->host<uint8_t>());
}
auto dstOrigin = (uint8_t*)mContainer[tId].stackPtr[cmd->indexes()->data()[0]];
auto dst = dstOrigin;
if (cmd->fuse() >= 0) {
dst = fuseBuffer.ptr();
}
do {
if (OpType_UnaryOp == op->type()) {
auto src = (uint8_t*)mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
if (nullptr == op->main()) {
// Copy
Tensor::InsideDescribe::Region reg;
auto srcView = cmd->view()->GetAs<View>(1);
auto dstView = cmd->view()->GetAs<View>(0);
::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
::memcpy(reg.dst.stride, outputStride, 3 * sizeof(int32_t));
auto step0 = cmd->steps()->data()[0];
auto step1 = cmd->steps()->data()[1];
auto loopNumber = mLoop->loopNumber();
_blit(reg, bytes, (const uint8_t*)src, (uint8_t*)dst, false);
break;
}
auto proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend())->precisionMode());
auto lastS = cmd->size()->data()[2];
if (lastS == 1 || cmd->view()->GetAs<View>(1)->stride()->data()[2] == 1) {
for (int z=0; z<cmd->size()->data()[0]; ++z) {
auto srcZ = src + z * cmd->view()->GetAs<View>(1)->stride()->data()[0] * bytes;
auto dstZ = dst + z * outputStride[0] * bytes;
for (int y=0; y<cmd->size()->data()[1]; ++y) {
auto srcY = srcZ + y * cmd->view()->GetAs<View>(1)->stride()->data()[1] * bytes;
auto dstY = dstZ + y * outputStride[1] * bytes;
proc(dstY, srcY, lastS);
}
}
} else {
// Blit to cache
auto srcCache = mCacheBuffer.ptr() + mMaxCacheSize * tId;
for (int z=0; z<cmd->size()->data()[0]; ++z) {
auto srcZ = src + z * cmd->view()->GetAs<View>(1)->stride()->data()[0] * bytes;
auto dstZ = dst + z * outputStride[0] * bytes;
for (int y=0; y<cmd->size()->data()[1]; ++y) {
auto srcY = srcZ + y * cmd->view()->GetAs<View>(1)->stride()->data()[1] * bytes;
auto dstY = dstZ + y * outputStride[1] * bytes;
blit(srcCache, srcY, lastS, cmd->view()->GetAs<View>(1)->stride()->data()[2], 1);
proc(dstY, srcCache, lastS);
}
}
}
continue;
}
if (OpType_MatMul == op->type()) {
// TODO: Don't support fuse for matmul currently
const float* APtr = nullptr;
const float* BPtr = nullptr;
const float* BiasPtr = nullptr;
float* CPtr = (float*)dst;
auto exe = static_cast<CPUMatMul*>(mContainer[tId].exe[index].get());
APtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
BPtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[2]];
if (iterIndexsize > 3) {
BiasPtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[3]];
}
exe->execute(APtr, BPtr, CPtr, BiasPtr);
break;
}
if (OpType_BinaryOp == op->type()) {
auto src0 = mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
MNNBinaryExecute proc;
if (inputType.code == halide_type_float) {
proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectBinaryFunctionForFloat(op->main_as_BinaryOp()->opType());
} else {
MNN_ASSERT(inputType.code == halide_type_int);
proc = CPUBinary::selectForInt(op->main_as_BinaryOp()->opType());
}
auto lastS = cmd->size()->data()[2];
auto stride0 = outputStride;
auto stride1 = cmd->view()->GetAs<View>(1)->stride()->data();
MNN_ASSERT(stride0[2] == 1);
auto src1 = mContainer[tId].stackPtr[cmd->indexes()->data()[2]];
auto stride2 = cmd->view()->GetAs<View>(2)->stride()->data();
auto blit1 = _selectUnitProc(bytes, stride1[2], 1);
auto blit2 = _selectUnitProc(bytes, stride2[2], 1);
if (cmd->size()->data()[2] == 1 || (stride1[2] == 1 && stride2[2] == 1)) {
for (int z=0; z<cmd->size()->data()[0]; ++z) {
auto src0Z = src0 + z * stride1[0] * bytes;
auto src1Z = src1 + z * stride2[0] * bytes;
auto dstZ = dst + z * stride0[0] * bytes;
for (int y=0; y<cmd->size()->data()[1]; ++y) {
auto src0Y = src0Z + y * stride1[1] * bytes;
auto src1Y = src1Z + y * stride2[1] * bytes;
auto dstY = dstZ + y * stride0[1] * bytes;
proc(dstY, src0Y, src1Y, cmd->size()->data()[2], -1);
}
}
} else {
auto cache0 = mCacheBuffer.ptr() + mMaxCacheSize * tId;
auto cache1 = cache0 + cmd->size()->data()[2] * bytes;
for (int z=0; z<cmd->size()->data()[0]; ++z) {
auto src0Z = src0 + z * stride1[0] * bytes;
auto src1Z = src1 + z * stride2[0] * bytes;
auto dstZ = dst + z * stride0[0] * bytes;
for (int y=0; y<cmd->size()->data()[1]; ++y) {
auto src0Y = src0Z + y * stride1[1] * bytes;
auto src1Y = src1Z + y * stride2[1] * bytes;
auto dstY = dstZ + y * stride0[1] * bytes;
blit1(cache0, src0Y, cmd->size()->data()[2], stride1[2], 1);
blit2(cache1, src1Y, cmd->size()->data()[2], stride2[2], 1);
proc(dstY, cache0, cache1, cmd->size()->data()[2], -1);
}
}
}
break;
}
} while(false);
if (dst != dstOrigin) {
MNN_ASSERT(bytes == 4);
// Currently only support add and float32
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
auto srcF = (const float*)dst;
auto dstF = (float*)dstOrigin;
int sizeZ = cmd->size()->data()[0];
int sizeY = cmd->size()->data()[1];
int sizeX = cmd->size()->data()[2];
if (cmd->op()->type() == OpType_MatMul) {
auto proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectBinaryFunctionForFloat(cmd->fuse());
proc(dstF, dstF, srcF, sizeZ * sizeX, -1);
continue;
}
switch (cmd->fuse()) {
case BinaryOpOperation_ADD:
for (int z=0; z<sizeZ; ++z) {
auto srcZ = srcF + z * outputStride[0];
auto dstZ = dstF + z * dstStride[0];
for (int y=0; y<sizeY; ++y) {
auto srcY = srcZ + y * outputStride[1];
auto dstY = dstZ + y * dstStride[1];
for (int x=0; x<sizeX; ++x) {
auto dstOffset = x * dstStride[2];
dstY[dstOffset] = dstY[dstOffset] + srcY[x];
}
}
}
break;
case BinaryOpOperation_MUL:
for (int z=0; z<sizeZ; ++z) {
auto srcZ = srcF + z * dstStride[0];
auto dstZ = dstF + z * outputStride[0];
for (int y=0; y<sizeY; ++y) {
auto srcY = srcZ + z * dstStride[1];
auto dstY = dstZ + z * outputStride[1];
for (int x=0; x<sizeX; ++x) {
auto dstOffset = x * dstStride[2];
dstY[dstOffset] = dstY[dstOffset] * srcY[x];
}
}
}
break;
case BinaryOpOperation_SUB:
for (int z=0; z<sizeZ; ++z) {
auto srcZ = srcF + z * dstStride[0];
auto dstZ = dstF + z * outputStride[0];
for (int y=0; y<sizeY; ++y) {
auto srcY = srcZ + z * dstStride[1];
auto dstY = dstZ + z * outputStride[1];
for (int x=0; x<sizeX; ++x) {
auto dstOffset = x * dstStride[2];
auto D = dstY[dstOffset];
auto S = srcY[x];
dstY[dstOffset] = D - S;
}
}
}
break;
default:
break;
}
}
}
};
if (mLoop->parallel()) {
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
for (int iter=tId; iter < mLoop->loopNumber(); iter+=threadNumber) {
func(iter, tId);
}
}
MNN_CONCURRENCY_END();
} else {
for (int iter=0; iter < mLoop->loopNumber(); ++iter) {
func(iter, 0);
}
}
return NO_ERROR;
}
private:
const LoopParam* mLoop;
std::vector<Tensor*> mStack;
std::vector<ThreadContainer> mContainer;
MemChunk mCacheBuffer, mFuseBuffer;
int mMaxCacheSize = 0;
int mMaxFuseBufferSize = 0;
};
class CPURasterFactory : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
if (op->type() == OpType_While) {
if (op->main_type() != OpParameter_LoopParam) {
return nullptr;
}
return new CPULoop(backend, op->main_as_LoopParam());
}
return new CPURaster(backend);
}
};
REGISTER_CPU_OP_CREATOR(CPURasterFactory, OpType_Raster);
REGISTER_CPU_OP_CREATOR(CPURasterFactory, OpType_While);
}