source/backend/cpu/CPUResize.hpp (397 lines of code) (raw):

// // CPUResize.hpp // MNN // // Created by MNN on 2018/07/17. // Copyright © 2018, Alibaba Group Holding Limited // #ifndef CPUResize_hpp #define CPUResize_hpp #include "core/AutoStorage.h" #include "core/Execution.hpp" #include "core/Concurrency.h" #include "backend/cpu/CPUBackend.hpp" #include "core/TensorUtils.hpp" #include "math/Vec.hpp" #include "core/Macro.h" #include <math.h> using Vec4 = MNN::Math::Vec<float, 4>; #ifdef __cplusplus extern "C" { #endif void CPUBilinearSampleC4(const float* src, float* dst, const int32_t* position, const float* factor, int8_t* zeroPoint, size_t number); void CPUBilinearLineC4(float* dst, const float* A, const float* B, const float* t, int8_t* zeroPoint, size_t number); void MNNBilinearSampleC8(const int8_t* src, int16_t* dst, const int32_t* position, const float* factor, int8_t* zeroPoint, size_t number); void MNNBilinearLineC8(int8_t* dst, const int16_t* A, const int16_t* B, const float* t, int8_t* zeroPoint, size_t number); void MNNCubicSampleC4(const float* src, float* dst, int32_t* position, const float* factor, int8_t* zeroPoint, size_t number); void MNNCubicLineC4(float* dst, const float* A, const float* B, const float* C, const float* D, float* t, int8_t* zeroPoint, size_t number, ssize_t minValue, ssize_t maxValue); void MNNCubicSampleC16(const int8_t* src, float* dst, int32_t* position, const float* factor, int8_t* zeroPoint, size_t number); void MNNCubicLineC16(int8_t* dst, const float* A, const float* B, const float* C, const float* D, float* t, int8_t* zeroPoint, size_t number, ssize_t minValue, ssize_t maxValue); #ifdef __cplusplus } #endif namespace MNN { static int CLAMP(int v, int min, int max) { if ((v) < min) { (v) = min; } else if ((v) > max) { (v) = max; } return v; } class CPUResizeCommon : public Execution { public: CPUResizeCommon(Backend *backend) : Execution(backend) { // Do nothing } virtual ~CPUResizeCommon() = default; virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) = 0; virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) = 0; template<typename T, typename U> void CPUResizeBilinearC4(void sampleFunction(const T*, U*, const int32_t*, const float*, int8_t*, size_t), void lineFunction(T*, const U*, const U*, const float*, int8_t*, size_t), const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const int* widthPosition, const float* widthFactor, const int* heightPosition, const float* heightFactor, U* lineBuffer, int threadNumber, int8_t* inputQuantZero, int8_t* outputQuantZero) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->batch(); const int inW = input->width(); const int inH = input->height(); const int outW = output->width(); const int outH = output->height(); int pack = 4; if(sizeof(T) == 1) { pack = 8; } int depthQuad = UP_DIV(input->channel(), pack) * batches; auto threadFunction = [&](size_t tId) { for (int n = (int)tId; n < depthQuad; n += threadNumber) { U* _lineBuffer = lineBuffer + 2 * pack * outW * tId; U* _line0 = _lineBuffer + pack * outW * 0; U* _line1 = _lineBuffer + pack * outW * 1; int yUsed[2] = {0, 0}; int yCache[2] = {-1, -1}; U* yCacheLine[2] = {_line0, _line1}; U* const yCacheStorage[2] = {_line0, _line1}; const T* bottomData = reinterpret_cast<const T*>(input->host<uint8_t>()) + (int)n * pack * inW * inH; T* topData = reinterpret_cast<T*>(output->host<uint8_t>()) + (int)n * pack * outW * outH; for (int dy = 0; dy < outH; dy++) { int yp[2]; yp[0] = heightPosition[2 * dy + 0]; yp[1] = heightPosition[2 * dy + 1]; // Search cache for (int j = 0; j < 2; ++j) { yUsed[j] = 0; } for (int j = 0; j < 2; ++j) { int find = 0; for (int k = 0; k < 2; ++k) { if (yp[j] == yCache[k]) { yUsed[k] = 1; yCacheLine[j] = yCacheStorage[k]; find = 1; break; } } if (!find) { const T* bottomY0 = bottomData + yp[j] * inW * pack; for (int k = 0; k < 2; ++k) { if (!yUsed[k]) { yCache[k] = yp[j]; yUsed[k] = 1; yCacheLine[j] = yCacheStorage[k]; sampleFunction(bottomY0, yCacheLine[j], widthPosition, widthFactor, inputQuantZero, outW); break; } } } } T* topY = topData + outW * pack * dy; // Sample Input lineFunction(topY, yCacheLine[0], yCacheLine[1], &heightFactor[dy], outputQuantZero, outW); } } }; MNN_CONCURRENCY_BEGIN(tId, threadNumber) { threadFunction(tId); } MNN_CONCURRENCY_END(); } template<typename T> void CPUResizeCubicC4(void sampleFunction(const T*, float*, int32_t*, const float*, int8_t*, size_t), void lineFunction(T*, const float*, const float*, const float*, const float*, float*, int8_t*, size_t, ssize_t, ssize_t), const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float xFactor, float yFactor, float wOffset, float hOffset, int8_t* inputQuantZero, int8_t* outputQuantZero, ssize_t minValue, ssize_t maxValue) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->batch(); const int inBatchSize = input->stride(0); const int outBatchSize = output->stride(0); const int inW = input->width(); const int inH = input->height(); const int N = input->channel(); const int outW = output->width(); const int outH = output->height(); int pack = 16/sizeof(T); const int depthQuad = UP_DIV(N, pack); AutoStorage<int> linePosition(4 * outW); AutoStorage<float> lineFactor(outW); auto _linePosition = linePosition.get(); auto _lineFactor = lineFactor.get(); // Compute Line Position for (int dx = 0; dx < outW; ++dx) { float x = (float)dx * xFactor + wOffset; int xInt = (int)x; _lineFactor[dx] = (float)(x - floor(x)); _linePosition[4 * dx + 0] = CLAMP(xInt - 1, 0, inW - 1); _linePosition[4 * dx + 1] = CLAMP(xInt + 0, 0, inW - 1); _linePosition[4 * dx + 2] = CLAMP(xInt + 1, 0, inW - 1); _linePosition[4 * dx + 3] = CLAMP(xInt + 2, 0, inW - 1); } for (int b = 0; b < batches; ++b) { MNN_CONCURRENCY_BEGIN(n, depthQuad); { int yUsed[4] = {0, 0, 0, 0}; int yCache[4] = {-1, -1, -1, -1}; AutoStorage<float> lineBuffer(4 * pack * outW); auto _lineBuffer = lineBuffer.get(); auto _line0 = _lineBuffer + pack * outW * 0; auto _line1 = _lineBuffer + pack * outW * 1; auto _line2 = _lineBuffer + pack * outW * 2; auto _line3 = _lineBuffer + pack * outW * 3; float* yCacheLine[4] = {_line0, _line1, _line2, _line3}; float* const yCacheStorage[4] = {_line0, _line1, _line2, _line3}; auto bottomData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inBatchSize + (int)n * pack * inW * inH; auto topData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outBatchSize + (int)n * pack * outW * outH; for (int dy = 0; dy < outH; dy++) { float y = (float)dy * yFactor + hOffset; int yInt = (int)y; int yp[4]; yp[0] = CLAMP(yInt - 1, 0, inH - 1); yp[1] = CLAMP(yInt, 0, inH - 1); yp[2] = CLAMP(yInt + 1, 0, inH - 1); yp[3] = CLAMP(yInt + 2, 0, inH - 1); // Search cache for (int j = 0; j < 4; ++j) { yUsed[j] = 0; } for (int j = 0; j < 4; ++j) { int find = 0; for (int k = 0; k < 4; ++k) { if (yp[j] == yCache[k]) { yUsed[k] = 1; yCacheLine[j] = yCacheStorage[k]; find = 1; break; } } if (!find) { const T* bottomY0 = bottomData + yp[j] * inW * pack; for (int k = 0; k < 4; ++k) { if (!yUsed[k]) { yCache[k] = yp[j]; yUsed[k] = 1; yCacheLine[j] = yCacheStorage[k]; sampleFunction(bottomY0, yCacheLine[j], _linePosition, _lineFactor, inputQuantZero, outW); break; } } } } // Sample Input float yFract = (float)(y - floor(y)); auto topY = topData + outW * pack * dy; lineFunction(topY, yCacheLine[0], yCacheLine[1], yCacheLine[2], yCacheLine[3], &yFract, outputQuantZero, outW, minValue, maxValue); } } MNN_CONCURRENCY_END(); } } template<typename T> void CPUResizeNearestneighborRoundC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float wScale, float hScale, float wOffset, float hOffset) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->batch(); const int inputBatchSize = input->stride(0); const int outputBatchSize = output->stride(0); const int inW = input->width(); const int inH = input->height(); const int outW = output->width(); const int outH = output->height(); const float xScaling = wScale; const float yScaling = hScale; int pack = 16/sizeof(T); const int depthQuad = UP_DIV(input->channel(), pack); AutoStorage<int> linePosition(outW); auto _linePosition = linePosition.get(); for (int x = 0; x < outW; ++x) { float src_x = x * xScaling + wOffset; int x1 = static_cast<int>(floorf(src_x + 0.499f)); _linePosition[x] = CLAMP(x1, 0, inW - 1); } for (int b = 0; b < batches; ++b) { MNN_CONCURRENCY_BEGIN(n, depthQuad) { auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH; auto dstData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH; for (int dy = 0; dy < outH; ++dy) { float srcY = dy * yScaling + hOffset; const int y_ = CLAMP(static_cast<int>(floorf(srcY + 0.499f)), 0, inH - 1); auto srcDataLine = srcData + inW * pack * y_; auto dstDataLine = dstData + outW * pack * dy; for (int dx = 0; dx < outW; ++dx) { ::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack); } } } MNN_CONCURRENCY_END(); } } template<typename T> void CPUResizeNearestneighborC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float wScale, float hScale, float wOffset, float hOffset) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->batch(); const int inputBatchSize = input->stride(0); const int outputBatchSize = output->stride(0); const int inW = input->width(); const int inH = input->height(); const int outW = output->width(); const int outH = output->height(); const float xScaling = wScale; const float yScaling = hScale; int pack = 4; if (sizeof(T) == 1) { pack = 8; } const int depthQuad = UP_DIV(input->channel(), pack); AutoStorage<int> linePosition(outW); auto _linePosition = linePosition.get(); for (int x = 0; x < outW; ++x) { float src_x = x * xScaling + wOffset; int x1 = static_cast<int>(floor(src_x)); _linePosition[x] = CLAMP(x1, 0, inW - 1); } for (int b = 0; b < batches; ++b) { MNN_CONCURRENCY_BEGIN(n, depthQuad) { auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH; auto dstData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH; for (int dy = 0; dy < outH; ++dy) { float srcY = dy * yScaling + hOffset; const int y_ = CLAMP(static_cast<int>(floor(srcY)), 0, inH - 1); auto srcDataLine = srcData + inW * pack * y_; auto dstDataLine = dstData + outW * pack * dy; for (int dx = 0; dx < outW; ++dx) { ::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack); } } } MNN_CONCURRENCY_END(); } } template<typename T> void CPUResizeNearestneighbor3DRoundC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float wScale, float hScale, float dScale, float wOffset, float hOffset, float dOffset) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->buffer().dim[0].extent; const int inputBatchSize = input->buffer().dim[0].stride; const int outputBatchSize = output->buffer().dim[0].stride; const int inW = input->buffer().dim[4].extent; const int inH = input->buffer().dim[3].extent; const int inD = input->buffer().dim[2].extent; const int outW = output->buffer().dim[4].extent; const int outH = output->buffer().dim[3].extent; const int outD = output->buffer().dim[2].extent; const float xScaling = wScale; const float yScaling = hScale; const float zScaling = dScale; int pack = 16 / sizeof(T); const int depthQuad = UP_DIV(input->buffer().dim[1].extent, pack); AutoStorage<int> linePosition(outW); auto _linePosition = linePosition.get(); for (int x = 0; x < outW; ++x) { float src_x = x * xScaling + wOffset; int x1 = static_cast<int>(floorf(src_x + 0.499f)); _linePosition[x] = CLAMP(x1, 0, inW - 1); } AutoStorage<int> columnPosition(outH); auto _columnPosition = columnPosition.get(); for (int y = 0; y < outH; ++y) { float src_y = y * yScaling + hOffset; int y1 = static_cast<int>(floorf(src_y + 0.499f)); _columnPosition[y] = CLAMP(y1, 0, inH - 1); } for (int b = 0; b < batches; ++b) { MNN_CONCURRENCY_BEGIN(n, depthQuad) { auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH * inD; auto dstData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH * inD; for (int dz = 0; dz < outD; ++dz) { float srcZ = dz * zScaling + dOffset; const int z_ = CLAMP(static_cast<int>(floorf(srcZ + 0.499f)), 0, inD - 1); auto srcDataArea = srcData + inH * inW * pack * z_; auto dstDataArea = dstData + outH * outW * pack * dz; for (int dy = 0; dy < outH; ++dy) { auto srcDataLine = srcDataArea + inW * pack * _columnPosition[dy]; auto dstDataLine = dstDataArea + outW * pack * dy; for (int dx = 0; dx < outW; ++dx) { ::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack); } } } } MNN_CONCURRENCY_END(); } } template<typename T> void CPUResizeNearestneighbor3DC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float wScale, float hScale, float dScale, float wOffset, float hOffset, float dOffset) { auto input = inputs[0]; auto output = outputs[0]; const int batches = input->buffer().dim[0].extent; const int inputBatchSize = input->buffer().dim[0].stride; const int outputBatchSize = output->buffer().dim[0].stride; const int inW = input->buffer().dim[4].extent; const int inH = input->buffer().dim[3].extent; const int inD = input->buffer().dim[2].extent; const int outW = output->buffer().dim[4].extent; const int outH = output->buffer().dim[3].extent; const int outD = output->buffer().dim[2].extent; const float xScaling = wScale; const float yScaling = hScale; const float zScaling = dScale; int pack = 16 / sizeof(T); const int depthQuad = UP_DIV(input->buffer().dim[1].extent, pack); AutoStorage<int> linePosition(outW); auto _linePosition = linePosition.get(); for (int x = 0; x < outW; ++x) { float src_x = x * xScaling + wOffset; int x1 = static_cast<int>(floor(src_x)); _linePosition[x] = CLAMP(x1, 0, inW - 1); } AutoStorage<int> columnPosition(outH); auto _columnPosition = columnPosition.get(); for (int y = 0; y < outH; ++y) { float src_y = y * yScaling + hOffset; int y1 = static_cast<int>(floor(src_y)); _columnPosition[y] = CLAMP(y1, 0, inH - 1); } for (int b = 0; b < batches; ++b) { MNN_CONCURRENCY_BEGIN(n, depthQuad) { auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH * inD; auto dstData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH * outD; for (int dz = 0; dz < outD; ++dz){ float srcZ = dz * zScaling + dOffset; const int z_ = CLAMP(static_cast<int>(floor(srcZ)), 0, inD - 1); auto srcDataArea = srcData + inH * inW * pack * z_; auto dstDataArea = dstData + outH * outW * pack * dz; for (int dy = 0; dy < outH; ++dy) { auto srcDataLine = srcDataArea + _columnPosition[dy] * inW * pack; auto dstDataLine = dstDataArea + dy * outW * pack; for (int dx = 0; dx < outW; ++dx) { ::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack); } } } } MNN_CONCURRENCY_END(); } } }; } // namespace MNN #endif /* CPUResize_hpp */