source/backend/cpu/CPUResize.hpp (397 lines of code) (raw):
//
// CPUResize.hpp
// MNN
//
// Created by MNN on 2018/07/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef CPUResize_hpp
#define CPUResize_hpp
#include "core/AutoStorage.h"
#include "core/Execution.hpp"
#include "core/Concurrency.h"
#include "backend/cpu/CPUBackend.hpp"
#include "core/TensorUtils.hpp"
#include "math/Vec.hpp"
#include "core/Macro.h"
#include <math.h>
using Vec4 = MNN::Math::Vec<float, 4>;
#ifdef __cplusplus
extern "C" {
#endif
void CPUBilinearSampleC4(const float* src, float* dst, const int32_t* position, const float* factor, int8_t* zeroPoint, size_t number);
void CPUBilinearLineC4(float* dst, const float* A, const float* B, const float* t, int8_t* zeroPoint, size_t number);
void MNNBilinearSampleC8(const int8_t* src, int16_t* dst, const int32_t* position, const float* factor, int8_t* zeroPoint, size_t number);
void MNNBilinearLineC8(int8_t* dst, const int16_t* A, const int16_t* B, const float* t, int8_t* zeroPoint, size_t number);
void MNNCubicSampleC4(const float* src, float* dst, int32_t* position, const float* factor, int8_t* zeroPoint, size_t number);
void MNNCubicLineC4(float* dst, const float* A, const float* B, const float* C, const float* D, float* t, int8_t* zeroPoint,
size_t number, ssize_t minValue, ssize_t maxValue);
void MNNCubicSampleC16(const int8_t* src, float* dst, int32_t* position, const float* factor, int8_t* zeroPoint, size_t number);
void MNNCubicLineC16(int8_t* dst, const float* A, const float* B, const float* C, const float* D, float* t, int8_t* zeroPoint,
size_t number, ssize_t minValue, ssize_t maxValue);
#ifdef __cplusplus
}
#endif
namespace MNN {
static int CLAMP(int v, int min, int max) {
if ((v) < min) {
(v) = min;
} else if ((v) > max) {
(v) = max;
}
return v;
}
class CPUResizeCommon : public Execution {
public:
CPUResizeCommon(Backend *backend) : Execution(backend) {
// Do nothing
}
virtual ~CPUResizeCommon() = default;
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) = 0;
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) = 0;
template<typename T, typename U>
void CPUResizeBilinearC4(void sampleFunction(const T*, U*, const int32_t*, const float*, int8_t*, size_t), void lineFunction(T*, const U*, const U*, const float*, int8_t*, size_t), const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const int* widthPosition, const float* widthFactor, const int* heightPosition,
const float* heightFactor, U* lineBuffer, int threadNumber, int8_t* inputQuantZero, int8_t* outputQuantZero) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->batch();
const int inW = input->width();
const int inH = input->height();
const int outW = output->width();
const int outH = output->height();
int pack = 4;
if(sizeof(T) == 1) {
pack = 8;
}
int depthQuad = UP_DIV(input->channel(), pack) * batches;
auto threadFunction = [&](size_t tId) {
for (int n = (int)tId; n < depthQuad; n += threadNumber) {
U* _lineBuffer = lineBuffer + 2 * pack * outW * tId;
U* _line0 = _lineBuffer + pack * outW * 0;
U* _line1 = _lineBuffer + pack * outW * 1;
int yUsed[2] = {0, 0};
int yCache[2] = {-1, -1};
U* yCacheLine[2] = {_line0, _line1};
U* const yCacheStorage[2] = {_line0, _line1};
const T* bottomData = reinterpret_cast<const T*>(input->host<uint8_t>()) + (int)n * pack * inW * inH;
T* topData = reinterpret_cast<T*>(output->host<uint8_t>()) + (int)n * pack * outW * outH;
for (int dy = 0; dy < outH; dy++) {
int yp[2];
yp[0] = heightPosition[2 * dy + 0];
yp[1] = heightPosition[2 * dy + 1];
// Search cache
for (int j = 0; j < 2; ++j) {
yUsed[j] = 0;
}
for (int j = 0; j < 2; ++j) {
int find = 0;
for (int k = 0; k < 2; ++k) {
if (yp[j] == yCache[k]) {
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
find = 1;
break;
}
}
if (!find) {
const T* bottomY0 = bottomData + yp[j] * inW * pack;
for (int k = 0; k < 2; ++k) {
if (!yUsed[k]) {
yCache[k] = yp[j];
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
sampleFunction(bottomY0, yCacheLine[j], widthPosition, widthFactor, inputQuantZero, outW);
break;
}
}
}
}
T* topY = topData + outW * pack * dy;
// Sample Input
lineFunction(topY, yCacheLine[0], yCacheLine[1], &heightFactor[dy], outputQuantZero, outW);
}
}
};
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
threadFunction(tId);
}
MNN_CONCURRENCY_END();
}
template<typename T>
void CPUResizeCubicC4(void sampleFunction(const T*, float*, int32_t*, const float*, int8_t*, size_t), void lineFunction(T*, const float*, const float*, const float*, const float*, float*, int8_t*, size_t, ssize_t, ssize_t),
const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float xFactor, float yFactor, float wOffset, float hOffset, int8_t* inputQuantZero, int8_t* outputQuantZero, ssize_t minValue, ssize_t maxValue) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->batch();
const int inBatchSize = input->stride(0);
const int outBatchSize = output->stride(0);
const int inW = input->width();
const int inH = input->height();
const int N = input->channel();
const int outW = output->width();
const int outH = output->height();
int pack = 16/sizeof(T);
const int depthQuad = UP_DIV(N, pack);
AutoStorage<int> linePosition(4 * outW);
AutoStorage<float> lineFactor(outW);
auto _linePosition = linePosition.get();
auto _lineFactor = lineFactor.get();
// Compute Line Position
for (int dx = 0; dx < outW; ++dx) {
float x = (float)dx * xFactor + wOffset;
int xInt = (int)x;
_lineFactor[dx] = (float)(x - floor(x));
_linePosition[4 * dx + 0] = CLAMP(xInt - 1, 0, inW - 1);
_linePosition[4 * dx + 1] = CLAMP(xInt + 0, 0, inW - 1);
_linePosition[4 * dx + 2] = CLAMP(xInt + 1, 0, inW - 1);
_linePosition[4 * dx + 3] = CLAMP(xInt + 2, 0, inW - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad);
{
int yUsed[4] = {0, 0, 0, 0};
int yCache[4] = {-1, -1, -1, -1};
AutoStorage<float> lineBuffer(4 * pack * outW);
auto _lineBuffer = lineBuffer.get();
auto _line0 = _lineBuffer + pack * outW * 0;
auto _line1 = _lineBuffer + pack * outW * 1;
auto _line2 = _lineBuffer + pack * outW * 2;
auto _line3 = _lineBuffer + pack * outW * 3;
float* yCacheLine[4] = {_line0, _line1, _line2, _line3};
float* const yCacheStorage[4] = {_line0, _line1, _line2, _line3};
auto bottomData = reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inBatchSize + (int)n * pack * inW * inH;
auto topData = reinterpret_cast<T*>(output->host<uint8_t>()) + b * outBatchSize + (int)n * pack * outW * outH;
for (int dy = 0; dy < outH; dy++) {
float y = (float)dy * yFactor + hOffset;
int yInt = (int)y;
int yp[4];
yp[0] = CLAMP(yInt - 1, 0, inH - 1);
yp[1] = CLAMP(yInt, 0, inH - 1);
yp[2] = CLAMP(yInt + 1, 0, inH - 1);
yp[3] = CLAMP(yInt + 2, 0, inH - 1);
// Search cache
for (int j = 0; j < 4; ++j) {
yUsed[j] = 0;
}
for (int j = 0; j < 4; ++j) {
int find = 0;
for (int k = 0; k < 4; ++k) {
if (yp[j] == yCache[k]) {
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
find = 1;
break;
}
}
if (!find) {
const T* bottomY0 = bottomData + yp[j] * inW * pack;
for (int k = 0; k < 4; ++k) {
if (!yUsed[k]) {
yCache[k] = yp[j];
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
sampleFunction(bottomY0, yCacheLine[j], _linePosition, _lineFactor, inputQuantZero, outW);
break;
}
}
}
}
// Sample Input
float yFract = (float)(y - floor(y));
auto topY = topData + outW * pack * dy;
lineFunction(topY, yCacheLine[0], yCacheLine[1], yCacheLine[2], yCacheLine[3], &yFract, outputQuantZero, outW, minValue, maxValue);
}
}
MNN_CONCURRENCY_END();
}
}
template<typename T>
void CPUResizeNearestneighborRoundC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, float wScale, float hScale, float wOffset, float hOffset) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->batch();
const int inputBatchSize = input->stride(0);
const int outputBatchSize = output->stride(0);
const int inW = input->width();
const int inH = input->height();
const int outW = output->width();
const int outH = output->height();
const float xScaling = wScale;
const float yScaling = hScale;
int pack = 16/sizeof(T);
const int depthQuad = UP_DIV(input->channel(), pack);
AutoStorage<int> linePosition(outW);
auto _linePosition = linePosition.get();
for (int x = 0; x < outW; ++x) {
float src_x = x * xScaling + wOffset;
int x1 = static_cast<int>(floorf(src_x + 0.499f));
_linePosition[x] = CLAMP(x1, 0, inW - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
auto srcData =
reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH;
auto dstData =
reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH;
for (int dy = 0; dy < outH; ++dy) {
float srcY = dy * yScaling + hOffset;
const int y_ = CLAMP(static_cast<int>(floorf(srcY + 0.499f)), 0, inH - 1);
auto srcDataLine = srcData + inW * pack * y_;
auto dstDataLine = dstData + outW * pack * dy;
for (int dx = 0; dx < outW; ++dx) {
::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack);
}
}
}
MNN_CONCURRENCY_END();
}
}
template<typename T>
void CPUResizeNearestneighborC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
float wScale, float hScale, float wOffset, float hOffset) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->batch();
const int inputBatchSize = input->stride(0);
const int outputBatchSize = output->stride(0);
const int inW = input->width();
const int inH = input->height();
const int outW = output->width();
const int outH = output->height();
const float xScaling = wScale;
const float yScaling = hScale;
int pack = 4;
if (sizeof(T) == 1) {
pack = 8;
}
const int depthQuad = UP_DIV(input->channel(), pack);
AutoStorage<int> linePosition(outW);
auto _linePosition = linePosition.get();
for (int x = 0; x < outW; ++x) {
float src_x = x * xScaling + wOffset;
int x1 = static_cast<int>(floor(src_x));
_linePosition[x] = CLAMP(x1, 0, inW - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
auto srcData =
reinterpret_cast<const T*>(input->host<uint8_t>()) + b * inputBatchSize + static_cast<int>(n) * pack * inW * inH;
auto dstData =
reinterpret_cast<T*>(output->host<uint8_t>()) + b * outputBatchSize + static_cast<int>(n) * pack * outW * outH;
for (int dy = 0; dy < outH; ++dy) {
float srcY = dy * yScaling + hOffset;
const int y_ = CLAMP(static_cast<int>(floor(srcY)), 0, inH - 1);
auto srcDataLine = srcData + inW * pack * y_;
auto dstDataLine = dstData + outW * pack * dy;
for (int dx = 0; dx < outW; ++dx) {
::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack);
}
}
}
MNN_CONCURRENCY_END();
}
}
template<typename T>
void CPUResizeNearestneighbor3DRoundC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
float wScale, float hScale, float dScale,
float wOffset, float hOffset, float dOffset) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->buffer().dim[0].extent;
const int inputBatchSize = input->buffer().dim[0].stride;
const int outputBatchSize = output->buffer().dim[0].stride;
const int inW = input->buffer().dim[4].extent;
const int inH = input->buffer().dim[3].extent;
const int inD = input->buffer().dim[2].extent;
const int outW = output->buffer().dim[4].extent;
const int outH = output->buffer().dim[3].extent;
const int outD = output->buffer().dim[2].extent;
const float xScaling = wScale;
const float yScaling = hScale;
const float zScaling = dScale;
int pack = 16 / sizeof(T);
const int depthQuad = UP_DIV(input->buffer().dim[1].extent, pack);
AutoStorage<int> linePosition(outW);
auto _linePosition = linePosition.get();
for (int x = 0; x < outW; ++x) {
float src_x = x * xScaling + wOffset;
int x1 = static_cast<int>(floorf(src_x + 0.499f));
_linePosition[x] = CLAMP(x1, 0, inW - 1);
}
AutoStorage<int> columnPosition(outH);
auto _columnPosition = columnPosition.get();
for (int y = 0; y < outH; ++y) {
float src_y = y * yScaling + hOffset;
int y1 = static_cast<int>(floorf(src_y + 0.499f));
_columnPosition[y] = CLAMP(y1, 0, inH - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>())
+ b * inputBatchSize + static_cast<int>(n) * pack * inW * inH * inD;
auto dstData = reinterpret_cast<T*>(output->host<uint8_t>())
+ b * outputBatchSize + static_cast<int>(n) * pack * outW * outH * inD;
for (int dz = 0; dz < outD; ++dz) {
float srcZ = dz * zScaling + dOffset;
const int z_ = CLAMP(static_cast<int>(floorf(srcZ + 0.499f)), 0, inD - 1);
auto srcDataArea = srcData + inH * inW * pack * z_;
auto dstDataArea = dstData + outH * outW * pack * dz;
for (int dy = 0; dy < outH; ++dy) {
auto srcDataLine = srcDataArea + inW * pack * _columnPosition[dy];
auto dstDataLine = dstDataArea + outW * pack * dy;
for (int dx = 0; dx < outW; ++dx) {
::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack);
}
}
}
}
MNN_CONCURRENCY_END();
}
}
template<typename T>
void CPUResizeNearestneighbor3DC4(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
float wScale, float hScale, float dScale,
float wOffset, float hOffset, float dOffset) {
auto input = inputs[0];
auto output = outputs[0];
const int batches = input->buffer().dim[0].extent;
const int inputBatchSize = input->buffer().dim[0].stride;
const int outputBatchSize = output->buffer().dim[0].stride;
const int inW = input->buffer().dim[4].extent;
const int inH = input->buffer().dim[3].extent;
const int inD = input->buffer().dim[2].extent;
const int outW = output->buffer().dim[4].extent;
const int outH = output->buffer().dim[3].extent;
const int outD = output->buffer().dim[2].extent;
const float xScaling = wScale;
const float yScaling = hScale;
const float zScaling = dScale;
int pack = 16 / sizeof(T);
const int depthQuad = UP_DIV(input->buffer().dim[1].extent, pack);
AutoStorage<int> linePosition(outW);
auto _linePosition = linePosition.get();
for (int x = 0; x < outW; ++x) {
float src_x = x * xScaling + wOffset;
int x1 = static_cast<int>(floor(src_x));
_linePosition[x] = CLAMP(x1, 0, inW - 1);
}
AutoStorage<int> columnPosition(outH);
auto _columnPosition = columnPosition.get();
for (int y = 0; y < outH; ++y) {
float src_y = y * yScaling + hOffset;
int y1 = static_cast<int>(floor(src_y));
_columnPosition[y] = CLAMP(y1, 0, inH - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
auto srcData = reinterpret_cast<const T*>(input->host<uint8_t>())
+ b * inputBatchSize + static_cast<int>(n) * pack * inW * inH * inD;
auto dstData = reinterpret_cast<T*>(output->host<uint8_t>())
+ b * outputBatchSize + static_cast<int>(n) * pack * outW * outH * outD;
for (int dz = 0; dz < outD; ++dz){
float srcZ = dz * zScaling + dOffset;
const int z_ = CLAMP(static_cast<int>(floor(srcZ)), 0, inD - 1);
auto srcDataArea = srcData + inH * inW * pack * z_;
auto dstDataArea = dstData + outH * outW * pack * dz;
for (int dy = 0; dy < outH; ++dy) {
auto srcDataLine = srcDataArea + _columnPosition[dy] * inW * pack;
auto dstDataLine = dstDataArea + dy * outW * pack;
for (int dx = 0; dx < outW; ++dx) {
::memcpy(dstDataLine + dx * pack, srcDataLine + _linePosition[dx] * pack, sizeof(T) * pack);
}
}
}
}
MNN_CONCURRENCY_END();
}
}
};
} // namespace MNN
#endif /* CPUResize_hpp */