source/backend/cpu/CPUScale.cpp (85 lines of code) (raw):

// // CPUScale.cpp // MNN // // Created by MNN on 2018/08/07. // Copyright © 2018, Alibaba Group Holding Limited // #include "CPUScale.hpp" #include "CPUScaleInt8.hpp" #include "CPUBackend.hpp" #include "core/Macro.h" #include "core/TensorUtils.hpp" #include "core/Concurrency.h" #include "compute/CommonOptFunction.h" namespace MNN { CPUScale::CPUScale(const Op* op, Backend* bn) : MNN::Execution(bn) { auto scale = op->main_as_Scale(); auto core = static_cast<CPUBackend*>(bn)->functions(); int outputCount = scale->scaleData()->size(); mScaleBias.reset(Tensor::createDevice<uint8_t>({2, UP_DIV(outputCount, core->pack) * core->pack * core->bytes})); auto res = bn->onAcquireBuffer(mScaleBias.get(), Backend::STATIC); if (!res) { MNN_ERROR("Error for alloc buffer for CPUScale\n"); mScaleBias = nullptr; mValid = false; return; } ::memset(mScaleBias->host<float>(), 0, mScaleBias->size()); if (core->bytes < 4) { core->MNNFp32ToLowp(scale->scaleData()->data(), mScaleBias->host<int16_t>(), outputCount); } else { ::memcpy(mScaleBias->host<float>(), scale->scaleData()->data(), outputCount * sizeof(float)); } if (nullptr != scale->biasData() && nullptr != scale->biasData()->data()) { auto biasPtr = mScaleBias->host<uint8_t>() + mScaleBias->length(1); if (core->bytes < 4) { core->MNNFp32ToLowp(scale->biasData()->data(), reinterpret_cast<int16_t*>(biasPtr), outputCount); } else { ::memcpy(biasPtr, scale->biasData()->data(), outputCount * sizeof(float)); } } } CPUScale::~CPUScale() { // Do nothing } CPUScale::CPUScale(Backend* bn) : Execution(bn) { // Do nothing } bool CPUScale::onClone(Backend* bn, const Op* op, Execution** dst) { if (nullptr == dst) { return true; } auto scale = new CPUScale(bn); scale->mScaleBias = mScaleBias; *dst = scale; return true; } ErrorCode CPUScale::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) { auto input = inputs[0]; auto output = outputs[0]; auto core = static_cast<CPUBackend*>(backend())->functions(); auto scalePtr = mScaleBias->host<uint8_t>(); auto biasPtr = mScaleBias->host<uint8_t>() + 1 * mScaleBias->length(1); //FUNC_PRINT(TensorUtils::getDescribe(input)->dimensionFormat); auto batch = input->buffer().dim[0].extent; auto depthQuad = UP_DIV(input->channel(), core->pack); int planeNumber = 1; for (int i = 2; i < input->buffer().dimensions; ++i) { planeNumber *= input->length(i); } auto depthStride = planeNumber * core->pack; auto totalDepth = batch * depthQuad; int numberThread = ((CPUBackend*)backend())->threadNumber(); MNN_CONCURRENCY_BEGIN(tId, numberThread) { for (int i = tId; i < totalDepth; i+=numberThread) { auto depthIndex = i / batch; core->MNNScaleAndAddBias((float*)(output->host<uint8_t>() + depthStride * i * core->bytes), (const float*)(input->host<uint8_t>() + depthStride * i * core->bytes), (const float*)(biasPtr + core->pack * core->bytes * depthIndex), (const float*)(scalePtr + core->pack * core->bytes * depthIndex), planeNumber, 1); } } MNN_CONCURRENCY_END(); return NO_ERROR; } class CPUScaleCreator : public CPUBackend::Creator { public: virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op, Backend* backend) const override { if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) { return new CPUScaleInt8(op, backend); } return new CPUScale(op, backend); } }; REGISTER_CPU_OP_CREATOR(CPUScaleCreator, OpType_Scale); } // namespace MNN