source/backend/cpu/CPUUnary.cpp (548 lines of code) (raw):
//
// CPUUnary.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUUnary.hpp"
#include "UnaryUtils.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "compute/ConvOpt.h"
#include "compute/CommonOptFunction.h"
#include <MNN/AutoTime.hpp>
#include "math/Vec.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
using VecType = Math::Vec<int8_t, 8>;
CPUUnary::CPUUnary(Backend *b, MNNUnaryExecute proc, MNNUnaryExecuteInt8 procInt8, const Op* op) : MNN::Execution(b), mProc(proc), mProcInt8(procInt8){
if (op->main_as_UnaryOp()->tableInt8()) {
mTableBuffer.resize(255);
::memcpy(mTableBuffer.data(), op->main_as_UnaryOp()->tableInt8()->data(), 255);
}
}
ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == outputs.size());
MNN_ASSERT(inputs[0]->getType() == halide_type_of<float>() || inputs[0]->getType() == halide_type_of<int32_t>());
if (mProcInt8) {
auto quantIn = TensorUtils::getDescribe(inputs[0])->quantAttr;
auto quantOut = TensorUtils::getDescribe(outputs[0])->quantAttr;
float outpScale = quantOut->scale == 0.f ? 0.f: 1.0f / quantOut->scale;
mInpScale.push_back(quantIn->scale);
mOupScale.push_back(outpScale);
mInpZeroPoint.push_back(quantIn->zero);
mOupZeroPoint.push_back(quantOut->zero);
mMaxMinValue = {static_cast<ssize_t>(quantOut->min), static_cast<ssize_t>(quantOut->max)};
}
return NO_ERROR;
}
static void _Neg(void* out, const void* inp, int realSize) {
MNNScaleAndAddBiasScalar((float*)out, (const float*)inp, 0.0f, -1.0f, realSize);
}
#ifdef MNN_USE_NEON
static inline void exeNegInt8 (int8_t* out, const int8_t* inp, int sizeQuad, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t inpScale, float32x4_t outScale) {
for (int i = 0;i < sizeQuad; ++i) {
int8x16_t negValue = vld1q_s8(inp);
int16x8_t val16_0 = vmovl_s8(vget_low_s8(negValue));
int16x8_t val16_1 = vmovl_s8(vget_high_s8(negValue));
val16_0 = vsubw_s8(val16_0, inZeroPoint);
val16_1 = vsubw_s8(val16_1, inZeroPoint);
int32x4_t val32_00 = vmovl_s16(vget_low_s16(val16_0));
int32x4_t val32_01 = vmovl_s16(vget_high_s16(val16_0));
int32x4_t val32_10 = vmovl_s16(vget_low_s16(val16_1));
int32x4_t val32_11 = vmovl_s16(vget_high_s16(val16_1));
float32x4_t valF_00 = vcvtq_f32_s32(val32_00);
float32x4_t valF_01 = vcvtq_f32_s32(val32_01);
float32x4_t valF_10 = vcvtq_f32_s32(val32_10);
float32x4_t valF_11 = vcvtq_f32_s32(val32_11);
valF_00 = vmulq_f32(valF_00, inpScale);
valF_01 = vmulq_f32(valF_01, inpScale);
valF_10 = vmulq_f32(valF_10, inpScale);
valF_11 = vmulq_f32(valF_11, inpScale);
valF_00 = vnegq_f32(valF_00);
valF_01 = vnegq_f32(valF_01);
valF_10 = vnegq_f32(valF_10);
valF_11 = vnegq_f32(valF_11);
valF_00 = vmulq_f32(valF_00, outScale);
valF_01 = vmulq_f32(valF_01, outScale);
valF_10 = vmulq_f32(valF_10, outScale);
valF_11 = vmulq_f32(valF_11, outScale);
int32x4_t val_00 = vcvtq_s32_f32(valF_00);
int32x4_t val_01 = vcvtq_s32_f32(valF_01);
int32x4_t val_10 = vcvtq_s32_f32(valF_10);
int32x4_t val_11 = vcvtq_s32_f32(valF_11);
int16x4_t v16_0 = vqmovn_s32(val_00);
int16x4_t v16_1 = vqmovn_s32(val_01);
int16x4_t v16_2 = vqmovn_s32(val_10);
int16x4_t v16_3 = vqmovn_s32(val_11);
int16x8_t v16_4 = vcombine_s16(v16_0, v16_1);
int16x8_t v16_5 = vcombine_s16(v16_2, v16_3);
v16_4 = vaddw_s8(v16_4, outZeroPoint);
v16_5 = vaddw_s8(v16_5, outZeroPoint);
int8x8_t v8_0 = vqmovn_s16(v16_4);
int8x8_t v8_1 = vqmovn_s16(v16_5);
vst1_s8(out, v8_0);
vst1_s8(out + 8, v8_1);
inp += 16;
out += 16;
}
}
#endif
static void _NegInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
int sizeDiv16 = realSize / 16;
int remain = realSize % 16;
#ifdef MNN_USE_NEON
int8_t* outPtr = (int8_t*)out;
int8_t* inPtr = (int8_t*)inp;
int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
float32x4_t inpScale = vdupq_n_f32(params->inputScale[0]);
float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
if (sizeDiv16 > 0) {
exeNegInt8(outPtr, inPtr, sizeDiv16, inZeroPoint, outZeroPoint, inpScale, outScale);
}
if (remain > 0) {
int8_t intmp[16] = {0};
int8_t outmp[16] = {0};
::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
exeNegInt8(outmp, intmp, 1, inZeroPoint, outZeroPoint, inpScale, outScale);
::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
}
#else
#ifdef MNN_USE_SSE
uint8_t* dst = (uint8_t*)out;
uint8_t* src = (uint8_t*)inp;
int offset = 128;
#else
int8_t* dst = (int8_t*)out;
int8_t* src = (int8_t*)inp;
int offset = 0;
#endif
int inzero_ = static_cast<int>(params->inputZeroPoint[0]);
int outzero_ = static_cast<int>(params->outputZeroPoint[0]);
float inscale_ = params->inputScale[0];
float outscale_ = params->outputScale[0];
int min_ = static_cast<int>(params->minValue);
int max_ = static_cast<int>(params->maxValue);
for (int i = 0; i < realSize; ++i) {
int value = -(src[i] - inzero_ - offset) * inscale_ * outscale_ + outzero_;
if (value > max_) {
value = max_;
}
if (value < min_) {
value = min_;
}
dst[i] = value + offset;
}
#endif
}
static void _ABS(void* out, const void* inp, int realSize) {
MNNReluWithSlopeCommon((float*)out, (const float*)inp, realSize, -1.0f);
}
#ifdef MNN_USE_NEON
static inline void exeAbsInt8(int8_t* out, const int8_t* inp, int sizeQuad, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t inpScale, float32x4_t outScale) {
for (int i = 0;i < sizeQuad; ++i) {
int8x16_t absValue = vld1q_s8(inp);
int16x8_t val16_0 = vmovl_s8(vget_low_s8(absValue));
int16x8_t val16_1 = vmovl_s8(vget_high_s8(absValue));
val16_0 = vsubw_s8(val16_0, inZeroPoint);
val16_1 = vsubw_s8(val16_1, inZeroPoint);
int32x4_t val32_00 = vmovl_s16(vget_low_s16(val16_0));
int32x4_t val32_01 = vmovl_s16(vget_high_s16(val16_0));
int32x4_t val32_10 = vmovl_s16(vget_low_s16(val16_1));
int32x4_t val32_11 = vmovl_s16(vget_high_s16(val16_1));
float32x4_t valF_00 = vcvtq_f32_s32(val32_00);
float32x4_t valF_01 = vcvtq_f32_s32(val32_01);
float32x4_t valF_10 = vcvtq_f32_s32(val32_10);
float32x4_t valF_11 = vcvtq_f32_s32(val32_11);
valF_00 = vmulq_f32(valF_00, inpScale);
valF_01 = vmulq_f32(valF_01, inpScale);
valF_10 = vmulq_f32(valF_10, inpScale);
valF_11 = vmulq_f32(valF_11, inpScale);
valF_00 = vabsq_f32(valF_00);
valF_01 = vabsq_f32(valF_01);
valF_10 = vabsq_f32(valF_10);
valF_11 = vabsq_f32(valF_11);
valF_00 = vmulq_f32(valF_00, outScale);
valF_01 = vmulq_f32(valF_01, outScale);
valF_10 = vmulq_f32(valF_10, outScale);
valF_11 = vmulq_f32(valF_11, outScale);
int32x4_t val_00 = vcvtq_s32_f32(valF_00);
int32x4_t val_01 = vcvtq_s32_f32(valF_01);
int32x4_t val_10 = vcvtq_s32_f32(valF_10);
int32x4_t val_11 = vcvtq_s32_f32(valF_11);
int16x4_t v16_0 = vqmovn_s32(val_00);
int16x4_t v16_1 = vqmovn_s32(val_01);
int16x4_t v16_2 = vqmovn_s32(val_10);
int16x4_t v16_3 = vqmovn_s32(val_11);
int16x8_t v16_4 = vcombine_s16(v16_0, v16_1);
int16x8_t v16_5 = vcombine_s16(v16_2, v16_3);
v16_4 = vaddw_s8(v16_4, outZeroPoint);
v16_5 = vaddw_s8(v16_5, outZeroPoint);
int8x8_t v8_0 = vqmovn_s16(v16_4);
int8x8_t v8_1 = vqmovn_s16(v16_5);
vst1_s8(out, v8_0);
vst1_s8(out + 8, v8_1);
inp += 16;
out += 16;
}
}
#endif
static void _ABSInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
int sizeDiv16 = realSize / 16;
int remain = realSize % 16;
#ifdef MNN_USE_NEON
int8_t* outPtr = (int8_t*)out;
int8_t* inPtr = (int8_t*)inp;
int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
float32x4_t inpScale = vdupq_n_f32(params->inputScale[0]);
float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
if (sizeDiv16 > 0) {
exeAbsInt8(outPtr, inPtr, sizeDiv16, inZeroPoint, outZeroPoint, inpScale, outScale);
}
if (remain > 0) {
int8_t intmp[16] = {0};
int8_t outmp[16] = {0};
::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
exeAbsInt8(outmp, intmp, 1, inZeroPoint, outZeroPoint, inpScale, outScale);
::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
}
#else
#ifdef MNN_USE_SSE
uint8_t* dst = (uint8_t*)out;
uint8_t* src = (uint8_t*)inp;
int offset = 128;
#else
int8_t* dst = (int8_t*)out;
int8_t* src = (int8_t*)inp;
int offset = 0;
#endif
int inzero_ = static_cast<int>(params->inputZeroPoint[0]);
int outzero_ = static_cast<int>(params->outputZeroPoint[0]);
for (int i = 0; i < realSize; ++i) {
auto value = abs((src[i] - inzero_ - offset) * params->inputScale[0]);
value = value * params->outputScale[0] + outzero_;
if (value > params->maxValue) {
value = params->maxValue;
}
if (value < params->minValue) {
value = params->minValue;
}
dst[i] = value + offset;
}
#endif
}
#ifdef MNN_USE_NEON
static inline void exeSignInt8 (int8_t* out, const int8_t* inp, int sizeQuad, int16x8_t one, int16x8_t negone, int16x8_t zero, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t outScale) {
for (int i = 0;i < sizeQuad; ++i) {
int8x16_t value = vld1q_s8(inp);
int16x8_t vallow = vmovl_s8(vget_low_s8(value));
int16x8_t valhi = vmovl_s8(vget_high_s8(value));
vallow = vsubw_s8(vallow, inZeroPoint);
valhi = vsubw_s8(valhi, inZeroPoint);
uint16x8_t lomask1 = vcgtq_s16(vallow, zero);
uint16x8_t lomask_1 = vcltq_s16(vallow, zero);
uint16x8_t himask1 = vcgtq_s16(valhi, zero);
uint16x8_t himask_1 = vcltq_s16(valhi, zero);
uint16x8_t zeromask_low = vceqq_u16(lomask1, lomask_1);
uint16x8_t zeromask_hi = vceqq_u16(himask1, himask_1);
vallow = vbslq_s16(lomask1, one, negone);
vallow = vbslq_s16(zeromask_low, zero, vallow);
valhi = vbslq_s16(himask1, one, negone);
valhi = vbslq_s16(zeromask_hi, zero, valhi);
int8x8_t v8_0 = vqmovn_s16(vallow);
int8x8_t v8_1 = vqmovn_s16(valhi);
vst1_s8(out, v8_0);
vst1_s8(out + 8, v8_1);
inp += 16;
out += 16;
}
}
#endif
static void _SignInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
int sizeDiv16 = realSize / 16;
int remain = realSize % 16;
#ifdef MNN_USE_NEON
int8_t* outPtr = (int8_t*)out;
int8_t* inPtr = (int8_t*)inp;
int16x8_t one = vdupq_n_s16(1);
int16x8_t negone = vdupq_n_s16(-1);
int16x8_t zero = vdupq_n_s16(0);
int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
if (sizeDiv16 > 0) {
exeSignInt8(outPtr, inPtr, sizeDiv16, one, negone, zero, inZeroPoint, outZeroPoint, outScale);
}
if (remain > 0) {
int8_t intmp[16] = {0};
int8_t outmp[16] = {0};
::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
exeSignInt8(outmp, intmp, 1, one, negone, zero, inZeroPoint, outZeroPoint, outScale);
::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
}
#else
#ifdef MNN_USE_SSE
uint8_t* dst = (uint8_t*)out;
uint8_t* src = (uint8_t*)inp;
int offset = 128;
#else
int8_t* dst = (int8_t*)out;
int8_t* src = (int8_t*)inp;
int offset = 0;
#endif
int inzero_ = static_cast<int>(params->inputZeroPoint[0]);
int outzero_ = static_cast<int>(params->outputZeroPoint[0]);
for (int i = 0; i < realSize; ++i) {
auto value = src[i] - offset - inzero_;
if (value > 0) {
int f = 1 * params->outputScale[0] + outzero_;
dst[i] = f + offset;
} else if (value < 0) {
int f = -1 * params->outputScale[0] + outzero_;
dst[i] = f + offset;
} else {
dst[i] = outzero_ + offset;
}
}
#endif
}
static void _Square(void* out, const void* inp, int realSize) {
MNNMatrixProdCommon((float*)out, (const float*)inp, (const float*)inp, realSize, 0, 0, 0, 1);
}
static void _EXP(void* outRaw, const void* inpRaw, int realSize) {
auto out = (float*)outRaw;
auto inp = (const float*)inpRaw;
float offset[] = {
1.0f,
0.0f,
0.0f,
0.0f
};
MNNExp(out, inp, offset, realSize);
}
static void _EXPM1(void* outRaw, const void* inpRaw, int realSize) {
auto out = (float*)outRaw;
auto inp = (const float*)inpRaw;
float offset[] = {
1.0f,
-1.0f,
0.0f,
0.0f
};
MNNExp(out, inp, offset, realSize);
}
MNNUnaryExecute CPUUnary::selectForFloat(int type, int precision) {
switch (type) {
case UnaryOpOperation_ABS:
return _ABS;
case UnaryOpOperation_SQUARE:
return _Square;
case UnaryOpOperation_NEG:
return _Neg;
case UnaryOpOperation_RSQRT:
return _unaryOp<UnaryRsqrt<float>, float>;
case UnaryOpOperation_EXP:
return _EXP;
case UnaryOpOperation_COS:
return _unaryOp<UnaryCos<float>, float>;
case UnaryOpOperation_SIN:
return (MNNUnaryExecute)MNNSin;
case UnaryOpOperation_SIGMOID:
if (BackendConfig::Precision_Low == precision) {
return (MNNUnaryExecute)MNNSigmoidLowp;
} else {
return (MNNUnaryExecute)MNNSigmoid;
}
break;
case UnaryOpOperation_SILU:
if (BackendConfig::Precision_Low == precision) {
return (MNNUnaryExecute)MNNSiLuLowp;
} else {
return (MNNUnaryExecute)MNNSiLu;
}
break;
case UnaryOpOperation_TANH:
return (MNNUnaryExecute)MNNTanh;
case UnaryOpOperation_TAN:
return _unaryOp<UnaryTan<float>, float>;
case UnaryOpOperation_ATAN:
return _unaryOp<UnaryATan<float>, float>;
case UnaryOpOperation_SQRT:
return _unaryOp<UnarySqrt<float>, float>;
case UnaryOpOperation_CEIL:
return _unaryOp<UnaryCeil<float>, float>;
case UnaryOpOperation_RECIPROCAL:
return _unaryOp<UnaryRecipocal<float>, float>;
case UnaryOpOperation_LOG1P:
return _unaryOp<UnaryLog1p<float>, float>;
case UnaryOpOperation_LOG:
return _unaryOp<UnaryLog<float>, float>;
case UnaryOpOperation_FLOOR:
return _unaryOp<UnaryFloor<float>, float>;
case UnaryOpOperation_BNLL:
return _unaryOp<UnaryBNLL<float>, float>;
case UnaryOpOperation_ACOSH:
return _unaryOp<UnaryAcosh<float>, float>;
case UnaryOpOperation_SINH:
return _unaryOp<UnarySinh<float>, float>;
case UnaryOpOperation_ASINH:
return _unaryOp<UnaryAsinh<float>, float>;
case UnaryOpOperation_ATANH:
return _unaryOp<UnaryAtanh<float>, float>;
case UnaryOpOperation_SIGN:
return _unaryOp<UnarySign<float>, float>;
case UnaryOpOperation_ROUND:
return _unaryOp<UnaryRound<float>, float>;
case UnaryOpOperation_COSH:
return _unaryOp<UnaryCosh<float>, float>;
case UnaryOpOperation_ERF:
return _unaryOp<UnaryErf<float>, float>;
case UnaryOpOperation_ERFC:
return _unaryOp<UnaryErfc<float>, float>;
case UnaryOpOperation_ERFINV:
return _unaryOp<UnaryErfinv<float>, float>;
case UnaryOpOperation_EXPM1:
return _EXPM1;
case UnaryOpOperation_ASIN:
return _unaryOp<UnaryAsin<float>, float>;
case UnaryOpOperation_ACOS:
return _unaryOp<UnaryAcos<float>, float>;
case UnaryOpOperation_HARDSWISH:
return (MNNUnaryExecute)MNNHardSwishCommon;
case UnaryOpOperation_GELU:
return (MNNUnaryExecute)MNNGeluCommon;
case UnaryOpOperation_GELU_STANDARD:
return (MNNUnaryExecute)MNNGeluStandardCommon;
default:
MNN_ASSERT(false);
break;
}
return nullptr;
}
static MNNUnaryExecute selectForInt(int type) {
switch (type) {
case UnaryOpOperation_ABS:
return _unaryOp<UnaryAbs<int32_t>, int32_t>;
case UnaryOpOperation_NEG:
return _unaryOp<UnaryNeg<int32_t>, int32_t>;
case UnaryOpOperation_SQUARE:
return _unaryOp<UnarySquare<int32_t>, int32_t>;
case UnaryOpOperation_SIGN:
return _unaryOp<UnarySign<int32_t>, int32_t>;
default:
break;
}
return nullptr;
}
MNNUnaryExecuteInt8 CPUUnary::selectForInt8(int type) {
switch (type) {
case UnaryOpOperation_ABS:
return _ABSInt8;
case UnaryOpOperation_NEG:
return _NegInt8;
case UnaryOpOperation_SIGN:
return _SignInt8;
default:
break;
}
return nullptr;
}
ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto size = static_cast<CPUBackend*>(backend())->getTensorSize(input);
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
auto inputPtr = input->host<uint8_t>();
auto outputPtr = output->host<uint8_t>();
int outBytes = output->getType().bytes();
if (halide_type_float == output->getType().code) {
outBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
}
if (mTableBuffer.data()) {
#ifdef MNN_USE_SSE
uint8_t* srcO = inputPtr;
uint8_t* dstO = outputPtr;
int offset = 128;
#else
int8_t* srcO = (int8_t*)inputPtr;
int8_t* dstO = (int8_t*)outputPtr;
int offset = 0;
#endif
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
auto inp = srcO + start;
auto out = dstO + start;
for (int i = 0; i < realSize; ++i) {
int idx = inp[i] - offset + 127;
out[i] = offset + mTableBuffer[idx];
}
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
if (mProcInt8) {
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
QuanPrePostParameters params;
params.inputScale = mInpScale.data();
params.outputScale = mOupScale.data();
params.inputZeroPoint= mInpZeroPoint.data();
params.outputZeroPoint = mOupZeroPoint.data();
params.maxValue = mMaxMinValue[1];
params.minValue = mMaxMinValue[0];
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
auto inp = inputPtr + start;
auto out = outputPtr + start;
mProcInt8(out, inp, realSize, ¶ms);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
}
if (realSize > 0) {
auto inp = inputPtr + start * outBytes;
auto out = outputPtr + start * outBytes;
mProc(out, inp, realSize);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUUnaryCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto core = static_cast<CPUBackend*>(backend)->functions();
auto precision = static_cast<CPUBackend*>(backend)->precisionMode();
auto type = inputs[0]->getType();
MNNUnaryExecute proc = nullptr;
MNNUnaryExecuteInt8 procInt8 = nullptr;
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
procInt8 = core->MNNSelectUnaryFunctionForInt8(op->main_as_UnaryOp()->opType());
} else if (type.code == halide_type_int) {
proc = selectForInt(op->main_as_UnaryOp()->opType());
} else if (type.code == halide_type_float) {
proc = core->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend)->precisionMode());
}
if (nullptr == proc && nullptr == procInt8 && nullptr == op->main_as_UnaryOp()->tableInt8()) {
MNN_ERROR("ERROR: Unary Op can not execute\n");
return nullptr;
}
return new CPUUnary(backend, proc, procInt8, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
} // namespace MNN