source/backend/cpu/UnaryUtils.hpp (228 lines of code) (raw):
#ifndef UnaryUtils_hpp
#define UnaryUtils_hpp
#include <cmath>
#include <vector>
#include <limits>
template <typename Func, typename T>
static void _unaryOp(void* outputPtr, const void* inputPtr, int elementSize) {
Func f;
const T *inputData = (T*)inputPtr;
T *outputData = (T *)outputPtr;
for (int i=0; i<elementSize; ++i) {
outputData[i] = f(inputData[i]);
}
}
template <typename T>
struct UnarySquare {
T operator()(const T &x) const {
return x * x;
}
};
template <typename T>
struct UnaryRsqrt {
T operator()(const T &x) const {
return 1.f / sqrtf(x);
}
};
template <typename T>
struct UnarySqrt {
T operator()(const T &x) const {
return sqrtf(x);
}
};
template <typename T>
struct UnaryNeg {
T operator()(const T &x) const {
return -x;
}
};
template <typename T>
struct UnaryExp {
T operator()(const T &x) const {
return expf(x);
}
};
template <typename T>
struct UnaryAbs {
T operator()(const T &x) const {
return fabsf((float)x);
}
};
template <typename T>
struct UnaryCeil {
T operator()(const T &x) const {
return ceilf(x);
}
};
template <typename T>
struct UnaryRecipocal {
T operator()(const T &x) const {
return (T)1 / (x);
}
};
template <typename T>
struct UnaryLog1p {
T operator()(const T &x) const {
return (T)logf((T)1 + (x));
}
};
template <typename T>
struct UnaryLog {
T operator()(const T &x) const {
return (T)logf((T)(x));
}
};
template <typename T>
struct UnaryCos {
T operator()(const T &x) const {
return (T)cosf((T)(x));
}
};
template <typename T>
struct UnarySin {
T operator()(const T &x) const {
return (T)sinf((T)(x));
}
};
template <typename T>
struct UnaryTan {
T operator()(const T &x) const {
return (T)tanf((T)(x));
}
};
template <typename T>
struct UnaryATan {
T operator()(const T &x) const {
return (T)atanf((T)(x));
}
};
template <typename T>
struct UnaryFloor {
T operator()(const T &x) const {
return (T)floor((T)(x));
}
};
template <typename T>
struct UnarySign {
T operator()(const T &x) const {
if (x > 0) {
return 1;
}
if (x < 0) {
return -1;
}
return 0;
}
};
template <typename T>
struct UnaryBNLL {
T operator()(const T &x) const {
float r = x > 0 ? (x + log(1. + exp(-x))) : log(1. + exp(x));
return (T)r;
}
};
template <typename T>
struct UnaryAcosh {
T operator()(const T &x) const {
return (T)acoshf((T)(x));
}
};
template <typename T>
struct UnarySinh {
T operator()(const T &x) const {
return (T)sinhf((T)(x));
}
};
template <typename T>
struct UnaryAsinh {
T operator()(const T &x) const {
return (T)asinhf((T)(x));
}
};
template <typename T>
struct UnaryAtanh {
T operator()(const T &x) const {
return (T)atanhf((T)(x));
}
};
template <typename T>
struct UnaryRound {
T operator()(const T &x) const {
return (T)roundf((T)(x));
}
};
template <typename T>
struct UnaryCosh {
T operator()(const T &x) const {
return (T)coshf((T)(x));
}
};
template <typename T>
struct UnaryErf {
T operator()(const T &x) const {
return erff(x);
}
};
template <typename T>
struct UnaryErfc {
T operator()(const T &x) const {
return erfc(x);
}
};
template <typename T>
struct UnaryErfinv {
// referenced from tensorflow
const int kDegree = 9;
const std::vector<float> w_less_than_5_constants = {
2.81022636e-08f, 3.43273939e-07f, -3.5233877e-06f,
-4.39150654e-06f, 0.00021858087f, -0.00125372503f,
-0.00417768164f, 0.246640727f, 1.50140941f};
const std::vector<float> w_greater_than_5_constants = {
-0.000200214257f, 0.000100950558f, 0.00134934322f,
-0.00367342844f, 0.00573950773f, -0.0076224613f,
0.00943887047f, 1.00167406f, 2.83297682f};
T operator()(const T &x) const {
// Compute logarithm of (1+arg) using log1p(arg) which is more precise than
// log(1+arg) when arg is close to zero. For more details, see
// https://en.cppreference.com/w/cpp/numeric/math/log1p
auto w = -log1p(-x * x);
bool lt = (w < 5.0);
auto coefficient = [&](int i) {
if (lt) {
return w_less_than_5_constants[i];
} else {
return w_greater_than_5_constants[i];
}
};
if (lt) {
w = w - 2.5;
} else {
w = sqrt(w) - 3.0;
}
auto p = coefficient(0);
for (int i = 1; i < kDegree; i++) {
p = coefficient(i) + p * w;
}
auto result = p * x;
if (fabsf(fabsf(x) - 1) < 1e-8) {
return std::numeric_limits<float>::infinity();
} else {
return result;
}
}
};
template <typename T>
struct UnaryExpm1 {
T operator()(const T &x) const {
return (T)expm1((T)(x));
}
};
template <typename T>
struct UnaryAsin {
T operator()(const T &x) const {
return (T)asin((T)(x));
}
};
template <typename T>
struct UnaryAcos {
T operator()(const T &x) const {
return (T)acos((T)(x));
}
};
#endif