source/backend/cpu/compute/CommonOptFunction.cpp (3,509 lines of code) (raw):

// // CommonOptFunction.cpp // MNN // // Created by MNN on 2018/09/06. // Copyright © 2018, Alibaba Group Holding Limited // #include "CommonOptFunction.h" #include "ConvOpt.h" #include "WinogradOptFunction.hpp" #include "Int8FunctionsOpt.h" #include "ImageProcessFunction.hpp" #include <string.h> #include <algorithm> #include <cmath> #include <math.h> #include "math/Vec.hpp" #include <vector> #include "../CPURuntime.hpp" #include "core/MemoryFormater.h" // TODO: Find better way to optimize it #include "../CPUBinary.hpp" #include "../CPUUnary.hpp" #include "../CPUPool.hpp" #define PACK 4 #define FLOAT float using Vec = MNN::Math::Vec<float, 4>; #include "../GridSampler.hpp" #ifdef MNN_LOW_MEMORY #ifdef __aarch64__ #include "backend/cpu/arm/arm64/low_memory/MNNDynamicQuantFunctions.hpp" #endif #endif #ifndef MNN_USE_SSE void MNNInt8ToInt16(int16_t* dest, const int8_t* source, size_t count) { // Should not be called MNN_ASSERT(false); } #endif #ifndef __aarch64__ #ifdef MNN_CPU_WEIGHT_DEQUANT_GEMM static void _MNNPackedMatMulRemain_int4(float* C, const float* A, const float* fB, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, int aStride, const float* k, const float* b) { auto B = reinterpret_cast<const uint8_t*>(fB); auto h = parameter[2]; auto l = parameter[1]; auto cStride = parameter[3] / sizeof(float); auto hRemain = parameter[4]; float weightBytes = 0.5; // sizeof(int4_t) auto bExtraStride = static_cast<int32_t>(parameter[5] / weightBytes); auto bStride = bExtraStride + 4 * l; auto hC4 = UP_DIV(h, 4); float minValue = -std::numeric_limits<float>().max(); float maxValue = std::numeric_limits<float>().max(); if (nullptr != postParameters) { minValue = postParameters[2]; maxValue = postParameters[3]; } int blockId = parameter[6]; for (int x=0; x<eSize; ++x) { auto dst = C + 4 * x; auto src = A + x; for (int y=0; y<hC4; ++y) { auto dstY = dst + y * cStride; auto weight = B + y * bStride / 2; auto alpha = k + y * 4; auto qbias = b + y * 4; float summer[4] = { 0.0f, 0.0f, 0.0f, 0.0f, }; if (blockId > 0) { summer[0] = dstY[0]; summer[1] = dstY[1]; summer[2] = dstY[2]; summer[3] = dstY[3]; } if (nullptr != bias && nullptr != postParameters) { for (int v=0; v<4; ++v) { summer[v] += bias[4 * y + v]; } } for (int z=0; z<l; ++z) { auto aZ = src + z * aStride; auto i4wZ = weight + z * 2; float wZ[4]; { auto w01 = i4wZ[0]; auto w23 = i4wZ[1]; int iw01 = w01; int iw23 = w23; int iw0 = iw01 / 16; int iw1 = iw01 % 16; int iw2 = iw23 / 16; int iw3 = iw23 % 16; wZ[0] = iw0 * alpha[0] + qbias[0]; wZ[1] = iw1 * alpha[1] + qbias[1]; wZ[2] = iw2 * alpha[2] + qbias[2]; wZ[3] = iw3 * alpha[3] + qbias[3]; } summer[0] += wZ[0] * aZ[0]; summer[1] += wZ[1] * aZ[0]; summer[2] += wZ[2] * aZ[0]; summer[3] += wZ[3] * aZ[0]; } for (int v=0; v<4; ++v) { auto dstValue = std::min(summer[v], maxValue); dstValue = std::max(dstValue, minValue); dstY[v] = dstValue; } } } } static void _MNNPackedMatMulRemain_int8(float* C, const float* A, const float* fB, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, int aStride, const float* k, const float* b) { auto B = reinterpret_cast<const int8_t*>(fB); auto h = parameter[2]; auto l = parameter[1]; auto cStride = parameter[3] / sizeof(float); auto hRemain = parameter[4]; float weightBytes = 1; // sizeof(int8_t) auto bExtraStride = static_cast<int32_t>(parameter[5] / weightBytes); auto bStride = bExtraStride + 4 * l; auto hC4 = UP_DIV(h, 4); float minValue = -std::numeric_limits<float>().max(); float maxValue = std::numeric_limits<float>().max(); if (nullptr != postParameters) { minValue = postParameters[2]; maxValue = postParameters[3]; } int blockId = parameter[6]; for (int x=0; x<eSize; ++x) { auto dst = C + 4 * x; auto src = A + x; for (int y=0; y<hC4; ++y) { auto dstY = dst + y * cStride; auto weight = B + y * bStride; auto alpha = k + y * 4; auto qbias = b + y * 4; float summer[4] = { 0.0f, 0.0f, 0.0f, 0.0f, }; if (blockId > 0) { summer[0] = dstY[0]; summer[1] = dstY[1]; summer[2] = dstY[2]; summer[3] = dstY[3]; } if (nullptr != bias && nullptr != postParameters) { for (int v=0; v<4; ++v) { summer[v] += bias[4 * y + v]; } } for (int z=0; z<l; ++z) { auto aZ = src + z * aStride; auto i8wZ = weight + z * 4; float wZ[4]; { wZ[0] = i8wZ[0] * alpha[0] + qbias[0]; wZ[1] = i8wZ[1] * alpha[1] + qbias[1]; wZ[2] = i8wZ[2] * alpha[2] + qbias[2]; wZ[3] = i8wZ[3] * alpha[3] + qbias[3]; } summer[0] += wZ[0] * aZ[0]; summer[1] += wZ[1] * aZ[0]; summer[2] += wZ[2] * aZ[0]; summer[3] += wZ[3] * aZ[0]; } for (int v=0; v<4; ++v) { auto dstValue = std::min(summer[v], maxValue); dstValue = std::max(dstValue, minValue); dstY[v] = dstValue; } } } } void MNNPackedMatMul_int4(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { _MNNPackedMatMulRemain_int4(C, A, B, 16, parameter, postParameters, bias, 16, k, b); } void MNNPackedMatMulRemain_int4(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { auto aStride = parameter[0] / sizeof(float); _MNNPackedMatMulRemain_int4(C, A, B, eSize, parameter, postParameters, bias, aStride, k, b); } void MNNPackedMatMul_int8(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { _MNNPackedMatMulRemain_int8(C, A, B, 16, parameter, postParameters, bias, 16, k, b); } void MNNPackedMatMulRemain_int8(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { auto aStride = parameter[0] / sizeof(float); _MNNPackedMatMulRemain_int8(C, A, B, eSize, parameter, postParameters, bias, aStride, k, b); } #endif // MNN_CPU_WEIGHT_DEQUANT_GEMM #ifdef MNN_LOW_MEMORY void MNNQuantScaleFP32(float* absmax, float* quant_scale, float* dequant_scale, size_t thread, size_t batch) { for (int i = 0; i < batch; ++i) { auto absmaxPtr = absmax + i; float absVal = 0.f; for (int t = 0; t < thread; ++t) { absVal = std::max(absVal, absmaxPtr[t * batch]); } if (absVal < 1e-7) { quant_scale[i] = 1.f; dequant_scale[i] = 1.f; } else { quant_scale[i] = 127.0f / absVal; dequant_scale[i] = absVal / 127.0f; } } } void MNNDynamicUpdateConvBiasScale(float* newbias, float* oldbias, float* weightKernelSum, float* inputBias, size_t ocQuad) { int ocUp4 = 4 * ocQuad; int pack = 4; for (int i = 0; i < ocUp4; ++i) { newbias[i] = oldbias[i] + weightKernelSum[i] * inputBias[0]; } } #endif // LOW_MEMORY #endif // not __aarch64__ static void MNNCountMaxMinValue(const float* source, float* minVal, float* maxVal, size_t size) { int pack = 4; float max_ = source[0], min_ = source[0]; for (int i = 1; i < size; ++i) { if (max_ < source[i]) { max_ = source[i]; } if (min_ > source[i]) { min_ = source[i]; } } *minVal = min_; *maxVal = max_; } #ifdef MNN_LOW_MEMORY static void MNNAbsMaxFP32(const float* source, float* absmax, size_t src_depth_quad, size_t realSize, int pack) { #ifdef __aarch64__ if (pack == 4) { MNNAbsMaxFP32_Pack4(source, absmax, src_depth_quad, realSize, pack); return; } if (pack == 8) { MNNAbsMaxFP32_Pack8(source, absmax, src_depth_quad, realSize, pack); return; } #endif // source: (ic/4, N, 4) auto srcStep = pack * realSize; for (int i = 0; i < realSize; ++i) { float absmaxVal = 0.f; // absmaxVal>=0 for (int c = 0; c < src_depth_quad; ++c) { auto src = source + c * srcStep + i * pack; for (int k = 0; k < pack; ++k) { absmaxVal = std::max(absmaxVal, std::abs(src[k])); } } absmax[i] = absmaxVal; } } void MNNDynamicQuantFP32(const float* src, int8_t* dst, const float* scale, size_t src_depth_quad, size_t realSize, int pack, const float* bias = nullptr) { #ifdef __aarch64__ if (pack == 4) { MNNDynamicQuantFP32_Pack4(src, dst, scale, src_depth_quad, realSize, nullptr, pack); return; } if (pack == 8) { MNNDynamicQuantFP32_Pack8(src, dst, scale, src_depth_quad, realSize, nullptr, pack); return; } #endif #ifdef MNN_USE_SSE uint8_t* dstPtr = reinterpret_cast<uint8_t*>(dst); int offset = 128; #else int8_t* dstPtr = dst; int offset = 0; #endif for (int i = 0; i < realSize; ++i) { auto scaleVal = scale[i]; for (int c = 0; c < src_depth_quad; ++c) { auto srcZ = src + c * pack * realSize + i * pack; auto dstZ = dstPtr + c * pack * realSize + i * pack; for (int k = 0; k < pack; ++k) { int val = (int)roundf(srcZ[k] * scaleVal); dstZ[k] = val + offset; } } } } static void MNNAsyQuantFunc(int8_t* dst, const float* src, float* qscale, float* qbias, const size_t* info) { // input shape: [kernelsize, blockNum, blockLU, EP, LP] auto blockNum = info[0]; auto EP = info[1]; // real area for data auto LP = info[2]; // Innermost data layout, may come from backend's pack or gemmint8 units' SRC_UNIT auto DST_XUNIT = info[3]; // backend gemmint8 units auto SRC_UNIT = info[4]; auto kernelsize = info[5]; auto blockLU = info[6]; auto stride0 = blockNum * blockLU * EP * LP; auto stride1 = blockLU * EP * LP; int int8Max = 127; int int8Min = -128; // qscale&qbias [blockNum, EP] #ifdef __aarch64__ if (LP == 4 || LP == 8) { for (int k = 0; k < kernelsize; ++k) { for (int i = 0; i < blockNum; ++i) { if (LP == 4) { MNNDynamicQuantFP32_Pack4(src + k * stride0 + i * stride1, dst + k * stride0 + i * stride1, qscale + i * EP, blockLU, EP, qbias + i * EP, LP); } if (LP == 8) { MNNDynamicQuantFP32_Pack8(src + k * stride0 + i * stride1, dst + k * stride0 + i * stride1, qscale + i * EP, blockLU, EP, qbias + i * EP, LP); } } } return; } #endif for (int i = 0; i < EP; ++i) { for (int bk = 0; bk < blockNum; ++bk) { float quant_scale = qscale[i + bk * EP]; float quant_bias = qbias[i + bk * EP]; for (int n = 0; n < kernelsize; ++n) { for (int k = 0; k < blockLU; ++k) { for (int j = 0; j < LP; ++j) { int dataIndx = n * stride0 + bk * stride1 + k * EP * LP + i * LP + j; float data_ = src[dataIndx]; int qval = static_cast<int32_t>(roundf(data_ * quant_scale + quant_bias)); #ifdef MNN_USE_SSE ((uint8_t*)dst)[dataIndx] = qval + 128; #else dst[dataIndx] = ALIMIN(int8Max, ALIMAX(int8Min, qval)); #endif } } } } } } static void MNNAsyQuantInfo_FP32(float* scale, float* bias, float* qscale, float* qbias, float* dstMin, float* dstMax, const float* src, const size_t* info) { auto blockNum = info[0]; auto plane = info[1]; // real area for data auto innerSide = info[2]; // Innermost data layout, may come from backend's pack or gemmint8 units' SRC_UNIT auto DST_XUNIT = info[3]; auto kernelsize = info[5]; auto blockLU = info[6]; auto stride0 = blockNum * blockLU * plane * innerSide; auto stride1 = blockLU * plane * innerSide; if (info[7] == 1) { // scale&bias:[1] float maxval, minval; MNNCountMaxMinValue(src, &minval, &maxval, kernelsize * stride0); if (info[8] == 1 && (maxval -minval) > 1e-7) { if (minval > 0.f) { minval = 0; } else if (maxval < 0.f){ maxval = 0; } } auto range = maxval - minval; if (range <= 1e-7) { scale[0] = 0.f; qscale[0] = 0.f; qbias[0] = 0.f; bias[0] = maxval; } else { qscale[0] = 255.f / range; scale[0] = range / 255.f; qbias[0] = roundf(-minval * 255.f / range)- 128.f; bias[0] = -qbias[0] * scale[0]; } return; } // input : [kernelsize, blockNum, blockLU, plane, pack] // dequant scale/bias : [EU, blockNum, step], step=ALIMIN(step, EP), EU=UP_DIV(plane, EP) // quant scale/bias : [blockNum, plane] #ifdef __aarch64__ if (DST_XUNIT == 12 && innerSide == 4) { // Arm82,fp32: SRC_UNIT=4, core->pack=4 // max,min shape: [blockNum, EP] for (int i = 0; i < kernelsize; ++i) { MNNLocalMinMaxFP32_Pack4(dstMin, dstMax, src + i * stride0, blockNum, blockLU, plane, innerSide, i); } // scale, bias bool success = MNNAsyLocalQuantInfo_EP12_FP32(scale, bias, qscale, qbias, dstMin, dstMax, info); if (!success) { MNN_ERROR("Call error for:MNNAsyLocalQuantInfo_EP12\n"); return; } return; } if (DST_XUNIT == 10) { // Arm86,fp32: SRC_UNIT=8,core->pack=4 // max,min shape: [blockNum, EP] if (innerSide == 4) { for (int i = 0; i < kernelsize; ++i) { MNNLocalMinMaxFP32_Pack4(dstMin, dstMax, src + i * stride0, blockNum, blockLU, plane, innerSide, i); } } if (innerSide == 8) { for (int i = 0; i < kernelsize; ++i) { MNNLocalMinMaxFP32_Pack8(dstMin, dstMax, src + i * stride0, blockNum, blockLU, plane, innerSide, i); } } // scale, bias bool success = MNNAsyLocalQuantInfo_EP10_FP32(scale, bias, qscale, qbias, dstMin, dstMax, info); if (!success) { MNN_ERROR("Call error for:MNNAsyLocalQuantInfo_EP10\n"); return; } return; } #endif // max,min shape: [blockNum, plane] for (int i = 0; i < plane; ++i) { for (int bk = 0; bk < blockNum; ++bk) { auto idx0 = i *innerSide + bk * stride1; float max_ = src[idx0]; float min_ = max_; for (int n = 0; n < kernelsize; ++n) { for (int k = 0; k < blockLU; ++k) { for (int j = 0; j < innerSide; ++j) { auto dataIndx = idx0 + n * stride0 + k * (plane * innerSide) + j; float data_ = src[dataIndx]; max_ = ALIMAX(max_, data_); min_ = ALIMIN(min_, data_); } } } auto sindx = i + bk * plane; dstMin[sindx] = min_; dstMax[sindx] = max_; } } // scale, bias for (int i = 0; i < plane; ++i) { auto step = ALIMIN(DST_XUNIT, plane - (i / DST_XUNIT) * DST_XUNIT); auto sind0 = (i / DST_XUNIT) * DST_XUNIT * blockNum + (i % DST_XUNIT); for (int k = 0; k < blockNum; ++k) { auto sind = sind0 + k * step; auto qind = i + k * plane; auto max_ = dstMax[qind]; auto min_ = dstMin[qind]; if (fabs(max_ - min_) < 1e-7) { qscale[qind] = 0.f; qbias[qind] = 0.f; scale[sind] = 0.f; bias[sind] = max_; } else { qscale[qind] = 255.f / (max_ - min_); qbias[qind] = roundf(-min_ * 255.f / (max_ - min_)) - 128.0f; scale[sind] = (max_ - min_) / 255.f; #ifndef MNN_USE_SSE bias[sind] = min_ + (128.f / 255.f) * (max_ - min_); #else bias[sind] = min_; #endif } } } } #endif // MNN_LOW_MEMORY static void MNNReorderWeightInt4(uint8_t* dest, const uint8_t* source, int32_t* shape, size_t size, float* kernelsum) { MNN_ASSERT(size > 4); auto blocknum = shape[0]; auto hu = shape[1]; auto lu = shape[2]; auto hp = shape[3]; auto lp = shape[4]; auto ic = blocknum * lu * lp; auto stride0 = blocknum * hp * lu * lp; auto stride1 = lu * hp * lp; auto stride2 = hp * lp; // [oc,ic]->[hu,blocknum,lu,hp,lp] for (int i = 0; i < hu; ++i) { for (int k = 0; k < hp; ++k) { for (int bl = 0; bl < blocknum; ++bl) { for (int j = 0; j < lu; ++j) { int srcindex = (i * hp + k) * ic + bl * (lu * lp) + j * lp; int dstindex = i * stride0 + bl * stride1 + j * stride2 + k * lp; memcpy(dest + dstindex, source + srcindex, lp); } } } } // [hu,blocknum,lu,hp,lp] address [hp,lp] for int4 auto inside = lp * hp; auto outside = blocknum * hu; std::vector<uint8_t> buffer(inside); for (int i = 0; i < outside; ++i) { std::vector<float> accum(hp, 0); for (int k = 0; k < lu; ++k) { for (int j = 0; j < inside / 2; ++j) { auto w0 = dest[j + (i * lu + k) * inside] >> 4; auto w1 = dest[j + (i * lu + k) * inside] & 0x0f; auto w2 = dest[(i * lu + k) * inside + j + inside / 2] >> 4; auto w3 = dest[(i * lu + k) * inside + j + inside / 2] & 0x0f; buffer[2 * j + 0] = w0 * 16 + w2; buffer[2 * j + 1] = w1 * 16 + w3; // sum accum[j / lp] += ((float)w0 + (float)w1); accum[(j + inside / 2) / lp] += ((float)w2 + (float)w3); } memcpy(dest + (i * lu + k) * inside, buffer.data(), inside); } memcpy(kernelsum + i * hp, accum.data(), hp * sizeof(float)); } } #ifdef __aarch64__ static void MNNReorderWeightInt4Arm86(uint8_t* dest, const uint8_t* source, int32_t* shape, size_t size, float* kernelsum) { MNN_ASSERT(size > 4); auto blocknum = shape[0]; auto hu = shape[1]; auto lu = shape[2]; auto hp = shape[3]; auto lp = shape[4]; auto ic = blocknum *lu * lp; auto stride0 = blocknum * hp * lu * lp; auto stride1 = lu * hp * lp; auto stride2 = hp * lp; auto dstPtr = (int32_t*)dest; auto srcPtr = (int32_t*)source; int unitpacksize = sizeof(int32_t) / sizeof(uint8_t); for (int i = 0; i < hu; ++i) { for (int k = 0; k < hp; ++k) { for (int bl = 0; bl < blocknum; ++bl) { int j = 0; while (j + 7 < lu) { auto srcindex0 = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / unitpacksize; auto srcindex1 = ((i * hp + k) * ic + bl * (lu * lp) + (j + 4) * lp) / unitpacksize; auto dstindex0 = (bl * stride1 + i * stride0 + j * stride2 + k * lp) / unitpacksize; auto dstindex1 = (bl * stride1 + i * stride0 + (j + 1) * stride2 + k * lp) / unitpacksize; auto dstindex2 = (bl * stride1 + i * stride0 + (j + 2) * stride2 + k * lp) / unitpacksize; auto dstindex3 = (bl * stride1 + i * stride0 + (j + 3) * stride2 + k * lp) / unitpacksize; auto dstindex4 = (bl * stride1 + i * stride0 + (j + 4) * stride2 + k * lp) / unitpacksize; auto dstindex5 = (bl * stride1 + i * stride0 + (j + 5) * stride2 + k * lp) / unitpacksize; auto dstindex6 = (bl * stride1 + i * stride0 + (j + 6) * stride2 + k * lp) / unitpacksize; auto dstindex7 = (bl * stride1 + i * stride0 + (j + 7) * stride2 + k * lp) / unitpacksize; j += 8; auto srcdata0 = vld1q_s32(srcPtr + srcindex0); auto srcdata1 = vld1q_s32(srcPtr + srcindex1); vst1q_lane_s32(dstPtr + dstindex0, srcdata0, 0); vst1q_lane_s32(dstPtr + dstindex1, srcdata0, 1); vst1q_lane_s32(dstPtr + dstindex2, srcdata0, 2); vst1q_lane_s32(dstPtr + dstindex3, srcdata0, 3); vst1q_lane_s32(dstPtr + dstindex4, srcdata1, 0); vst1q_lane_s32(dstPtr + dstindex5, srcdata1, 1); vst1q_lane_s32(dstPtr + dstindex6, srcdata1, 2); vst1q_lane_s32(dstPtr + dstindex7, srcdata1, 3); } while (j + 3 < lu) { auto srcindex = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / unitpacksize; auto dstindex0 = (bl * stride1 + i * stride0 + j * stride2 + k * lp) / unitpacksize; auto dstindex1 = (bl * stride1 + i * stride0 + (j + 1) * stride2 + k * lp) / unitpacksize; auto dstindex2 = (bl * stride1 + i * stride0 + (j + 2) * stride2 + k * lp) / unitpacksize; auto dstindex3 = (bl * stride1 + i * stride0 + (j + 3) * stride2 + k * lp) / unitpacksize; j += 4; auto srcdata = vld1q_s32(srcPtr + srcindex); vst1q_lane_s32(dstPtr + dstindex0, srcdata, 0); vst1q_lane_s32(dstPtr + dstindex1, srcdata, 1); vst1q_lane_s32(dstPtr + dstindex2, srcdata, 2); vst1q_lane_s32(dstPtr + dstindex3, srcdata, 3); } while (j < lu) { auto srcindex = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / unitpacksize; auto dstindex = (bl * stride1+ i * stride0 + j * stride2 + k * lp) / unitpacksize; dstPtr[dstindex] = srcPtr[srcindex]; j++; } } } } MNNPermuteSumWeightInt4Arm86(dest, dest, blocknum * hu, lu, kernelsum); } static void MNNReorderWeightInt4Arm82(uint8_t* dest, const uint8_t* source, int32_t* shape, size_t size, float* kernelsum) { MNN_ASSERT(size > 4); // dst shape: [hu, blocknum, kernelCount, lu, hp, lp], kernelCount=1 in this case auto blocknum = shape[0]; auto hu = shape[1]; auto lu = shape[2]; auto hp = shape[3]; auto lp = shape[4]; auto ic = blocknum *lu * lp; auto stride0 = blocknum * hp * lu * lp; auto stride1 = lu * hp * lp; auto stride2 = hp * lp; auto dstPtr = (int16_t*)dest; auto srcPtr = (int16_t*)source; int unitpacksize = sizeof(int16_t) / sizeof(uint8_t); for (int i = 0; i < hu; ++i) { for (int k = 0; k < hp; ++k) { for (int bl = 0; bl < blocknum; ++bl) { int j = 0; while (j + 7 < lu) { auto srcindex = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / unitpacksize; auto dstindex0 = (bl * stride1 + i * stride0 + j * stride2 + k * lp) / unitpacksize; auto dstindex1 = (bl * stride1 + i * stride0 + (j + 1) * stride2 + k * lp) / unitpacksize; auto dstindex2 = (bl * stride1 + i * stride0 + (j + 2) * stride2 + k * lp) / unitpacksize; auto dstindex3 = (bl * stride1 + i * stride0 + (j + 3) * stride2 + k * lp) / unitpacksize; auto dstindex4 = (bl * stride1 + i * stride0 + (j + 4) * stride2 + k * lp) / unitpacksize; auto dstindex5 = (bl * stride1 + i * stride0 + (j + 5) * stride2 + k * lp) / unitpacksize; auto dstindex6 = (bl * stride1 + i * stride0 + (j + 6) * stride2 + k * lp) / unitpacksize; auto dstindex7 = (bl * stride1 + i * stride0 + (j + 7) * stride2 + k * lp) / unitpacksize; j += 8; auto srcdata = vld1q_s16(srcPtr + srcindex); vst1q_lane_s16(dstPtr + dstindex0, srcdata, 0); vst1q_lane_s16(dstPtr + dstindex1, srcdata, 1); vst1q_lane_s16(dstPtr + dstindex2, srcdata, 2); vst1q_lane_s16(dstPtr + dstindex3, srcdata, 3); vst1q_lane_s16(dstPtr + dstindex4, srcdata, 4); vst1q_lane_s16(dstPtr + dstindex5, srcdata, 5); vst1q_lane_s16(dstPtr + dstindex6, srcdata, 6); vst1q_lane_s16(dstPtr + dstindex7, srcdata, 7); } while (j + 3 < lu) { auto srcindex = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / unitpacksize; auto dstindex0 = (bl * stride1 + i * stride0 + j * stride2 + k * lp) / unitpacksize; auto dstindex1 = (bl * stride1 + i * stride0 + (j + 1) * stride2 + k * lp) / unitpacksize; auto dstindex2 = (bl * stride1 + i * stride0 + (j + 2) * stride2 + k * lp) / unitpacksize; auto dstindex3 = (bl * stride1 + i * stride0 + (j + 3) * stride2 + k * lp) / unitpacksize; j += 4; auto srcdata = vld1_s16(srcPtr + srcindex); vst1_lane_s16(dstPtr + dstindex0, srcdata, 0); vst1_lane_s16(dstPtr + dstindex1, srcdata, 1); vst1_lane_s16(dstPtr + dstindex2, srcdata, 2); vst1_lane_s16(dstPtr + dstindex3, srcdata, 3); } while (j < lu) { auto srcindex = ((i * hp + k) * ic + bl * (lu * lp) + j * lp) / 2; auto dstindex = (bl * stride1 + i * stride0 + j * stride2 + k * lp) / 2; dstPtr[dstindex] = srcPtr[srcindex]; j++; } } } } MNNPermuteSumWeightInt4Arm82(dest, dest, blocknum * hu, lu, kernelsum); } #endif // __aarch64__ static void MNNSumWeightInt8(float* kernelsum, int8_t* source, size_t outside, size_t reduceAxis, size_t hP, size_t lP) { // weight shape: [outside, axis, hP, lP] // outside = blocknum * hU // reduceAxis = kernelCount * lU auto inside = hP * lP; auto stride0 = inside * reduceAxis; std::vector<float> accum(hP); for (int i = 0; i < outside; ++i) { memset(accum.data(), 0, hP * 4); for (int j = 0; j < reduceAxis; ++j) { for (int k = 0; k < hP; ++k) { for (int x = 0; x < lP; ++x) { accum[k] += (float)source[x + k * lP + j * inside + i * stride0]; } } } memcpy(kernelsum + i * hP, accum.data(), hP * sizeof(float)); } } static void MNNSumByAxisLForMatmul_A(float* dest, int8_t* source, const float* scale, ssize_t realDstCount, SumByAxisParams sumParams) { #ifdef MNN_USE_SSE uint8_t* srcInt8 = reinterpret_cast<uint8_t*>(source); #else int8_t* srcInt8 = source; #endif auto scalePtr = scale; auto blockNum = sumParams.blockNum; auto EP = sumParams.DST_XUNIT; auto LP = sumParams.SRC_UNIT; auto col_buffer_unit_size = sumParams.unitColBufferSize; auto oneScale = sumParams.oneScale; auto LU = sumParams.LU; auto valid = sumParams.valid; auto kernelxy = sumParams.kernelxy; auto blockSizeQuad = LU / blockNum; auto inputBlockQuant = sumParams.inputBlock; auto lastL = LP; if (valid) { lastL = valid; } float singlescale = scale[0]; do { int step = ALIMIN(EP, realDstCount); int scaleOffset = inputBlockQuant ? (step * blockNum) : step; for (int k = 0; k < blockNum; ++k) { const auto src_x = srcInt8 + k * (step * LP * blockSizeQuad * kernelxy); for (int w = 0; w < step; ++w) { float dequantScale = singlescale; if (oneScale == 0 && inputBlockQuant) { dequantScale = scalePtr[w + k * step]; } else if (oneScale == 0) { dequantScale = scalePtr[w]; } int sumint32 = 0; const auto src_y = src_x + w * LP; for (int j = 0; j < kernelxy; ++j) { for (int i = 0; i < blockSizeQuad; ++i) { auto sumsize = i == (blockSizeQuad - 1) ? lastL : LP; const auto src_z = src_y + j * (blockSizeQuad * step * LP) + i * step * LP; for (int x = 0; x < sumsize; ++x) { sumint32 += src_z[x]; } } } dest[w + k * step] = dequantScale * static_cast<float>(sumint32); } } scalePtr += scaleOffset; dest += (step * blockNum); realDstCount -= step; srcInt8 += col_buffer_unit_size; } while(realDstCount > 0); } template<typename T> void MNNPackC4Common(T* dst, const T* src, size_t area, size_t depth, int* areaOffset) { int depthC4 = depth / 4; int depthRemain = depthC4 * 4; int remain = depth - depthRemain; int z, x, y; const T* srcChannel[4]; const T* srcOffset = src; for(z = 0; z < depthC4; ++z) { auto dstZ = dst + z * areaOffset[1] * 4; for(y = 0; y < 4; ++y) { srcChannel[y] = srcOffset + areaOffset[0] * y; } for(x = 0; x < area; ++x) { for(y = 0; y < 4; ++y) { dstZ[0] = srcChannel[y][x]; dstZ++; } } srcOffset += areaOffset[0] * 4; } if(remain > 0){ auto dstZ = dst + depthC4 * areaOffset[1] * 4; for(y = 0; y < remain; ++y) { srcChannel[y] = srcOffset + areaOffset[0] * y; } for(x = 0; x < area; ++x) { for(y = 0; y < remain; ++y) { dstZ[0] = srcChannel[y][x]; dstZ++; } for(y = remain; y < 4; ++y) { dstZ[0] = 0; dstZ++; } } } } template<typename T> void MNNUnpackC4Common(T* dst, const T* src, size_t area, size_t depth, int* areaOffset) { int depthC4 = depth / 4; int depthRemain = depthC4 * 4; int remain = depth - depthRemain; int z, x, y; const T* srcChannel[4]; const T* srcOffset = src; for(z = 0; z < depthC4; ++z) { for(y = 0; y < 4; ++y) { auto dstZ = dst + (z * 4 + y) * areaOffset[1]; srcChannel[y] = srcOffset + y; for(x = 0; x < area; ++x) { dstZ[x] = srcChannel[y][0]; srcChannel[y] += 4; } } srcOffset += areaOffset[0] * 4; } if(remain > 0){ auto dstZ = dst + depthC4 * areaOffset[1] * 4; for(y = 0; y < remain; ++y) { srcChannel[y] = srcOffset + y; for(x = 0; x < area; ++x) { dstZ[x] = srcChannel[y][0]; srcChannel[y] += 4; } dstZ += areaOffset[1]; } } } template<typename T> void MNNPackC2Common(T* dst, const T* src, size_t area, size_t depth, int* areaOffset) { int depthC2 = depth / 2; int depthRemain = depthC2 * 2; int remain = depth - depthRemain; int z, x, y; const T* srcChannel[2]; const T* srcOffset = src; for(z = 0; z < depthC2; ++z) { auto dstZ = dst + z * areaOffset[1] * 2; for(y = 0; y < 2; ++y) { srcChannel[y] = srcOffset + areaOffset[0] * y; } for(x = 0; x < area; ++x) { for(y = 0; y < 2; ++y) { dstZ[0] = srcChannel[y][x]; dstZ++; } } srcOffset += areaOffset[0] * 2; } if(remain > 0){ auto dstZ = dst + depthC2 * areaOffset[1] * 2; for(y = 0; y < remain; ++y) { srcChannel[y] = srcOffset + areaOffset[0] * y; } for(x = 0; x < area; ++x) { for(y = 0; y < remain; ++y) { dstZ[0] = srcChannel[y][x]; dstZ++; } for(y = remain; y < 2; ++y) { dstZ[0] = 0; dstZ++; } } } } template<typename T> void MNNUnpackC2Common(T* dst, const T* src, size_t area, size_t depth, int* areaOffset, int pack = 1) { int depthC2 = depth / 2; int depthRemain = depthC2 * 2; int remain = depth - depthRemain; int z, x, y; const T* srcChannel[2]; const T* srcOffset = src; for(z = 0; z < depthC2; ++z) { for(y = 0; y < 2; ++y) { auto dstZ = dst + (z * 2 + y) * areaOffset[1] * pack; srcChannel[y] = srcOffset + y * pack; for(x = 0; x < area; ++x) { for (int p = 0; p < pack; ++p) { dstZ[x * pack + p] = srcChannel[y][p]; } srcChannel[y] += (2 * pack); } } srcOffset += areaOffset[0] * 2 * pack; } if(remain > 0){ auto dstZ = dst + depthC2 * areaOffset[1] * 2 * pack; for(y = 0; y < remain; ++y) { srcChannel[y] = srcOffset + y * pack; for(x = 0; x < area; ++x) { for (int p = 0; p < pack; ++p) { dstZ[x * pack + p] = srcChannel[y][p]; } srcChannel[y] += 2 * pack; } dstZ += areaOffset[1] * pack; } } } void MNN4BitcopyWithStride (uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { auto src = (uint32_t*)srcO; auto dst = (uint32_t*)dstO; for (int i = 0; i < size; ++i) { dst[0] = *src; dst += ds; src += stride; } } void MNN4BitcopyFast (uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { // ds=1, stride=0||1 auto src = (float*)srcO; auto dst = (float*)dstO; int cnt = size; if (stride == 1) { // stride=1 #ifdef MNN_USE_NEON for (; cnt >= 8; cnt -= 8) { auto v4 = vld1q_f32(src); auto u4 = vld1q_f32(src + 4); vst1q_f32(dst, v4); vst1q_f32(dst + 4, u4); dst += 8; src += 8; } for (; cnt >= 4; cnt -= 4) { auto v4 = vld1q_f32(src); vst1q_f32(dst, v4); dst += 4; src += 4; } #elif defined(MNN_USE_SSE) for (; cnt >= 8; cnt -= 8) { __m128 v4 = _mm_loadu_ps(src); __m128 u4 = _mm_loadu_ps(src + 4); _mm_storeu_ps(dst, v4); _mm_storeu_ps(dst + 4, u4); dst += 8; src += 8; } for (; cnt >= 4; cnt -= 4) { __m128 v4 = _mm_loadu_ps(src); _mm_storeu_ps(dst, v4); dst += 4; src += 4; } #endif } else { // stride=0 int i = 0; float val = *src; #ifdef MNN_USE_NEON auto val4 = vdupq_n_f32(val); for (; cnt >= 8; cnt -= 8) { vst1q_f32(dst, val4); vst1q_f32(dst + 4, val4); dst += 8; } for (; cnt >= 4; cnt -= 4) { vst1q_f32(dst, val4); dst += 4; } #elif defined(MNN_USE_SSE) __m128 val4 = _mm_set_ps(val, val, val, val); for (; cnt >= 8; cnt -= 8) { _mm_storeu_ps(dst, val4); _mm_storeu_ps((dst + 4), val4); dst += 8; } for (; cnt >= 4; cnt -= 4) { _mm_storeu_ps(dst, val4); dst += 4; } #endif } for (; cnt > 0; --cnt) { dst[0] = *src; dst += ds; src += stride; } } void MNN2BitcopyWithStride(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { auto src = (uint16_t*)srcO; auto dst = (uint16_t*)dstO; for (int i=0; i<size; ++i) { *dst = *src; src+=stride; dst+=ds; } } void MNN2BitcopyFast(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { auto src = (uint16_t*)srcO; auto dst = (uint16_t*)dstO; int cnt = size; uint16_t val = *src; if (stride == 1) { #ifdef MNN_USE_NEON for (; cnt >= 8; cnt-=8) { auto val8 = vld1q_u16(src); vst1q_u16(dst, val8); src += 8; dst += 8; } for (; cnt >= 4; cnt-=4) { auto val4 = vld1_u16(src); vst1_u16(dst, val4); src += 4; dst += 4; } #elif defined(MNN_USE_SSE) for (; cnt >= 8; cnt-=8) { auto tmp = _mm_loadu_ps((float*)src); _mm_storeu_ps((float*)dst, tmp); src += 8; dst += 8; } #endif } else { // stride=0 #ifdef MNN_USE_NEON auto val4 = vdup_n_u16(val); auto val8 = vdupq_n_u16(val); for (; cnt >= 8; cnt-=8) { vst1q_u16(dst, val8); dst += 8; } for (; cnt >= 4; cnt-=4) { vst1_u16(dst, val4); dst += 4; } #elif defined(MNN_USE_SSE) uint16_t arr[8] = {val, val, val, val, val, val, val, val}; auto val8 = _mm_loadu_ps((float*)arr); for (; cnt >= 8; cnt-=8) { _mm_storeu_ps((float*)dst, val8); dst += 8; } #endif } for (; cnt > 0; --cnt) { *dst = *src; src += stride; dst += ds; } } void MNN1BitcopyWithStride (uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { for (int i = 0; i < size; ++i) { dstO[0] = *srcO; dstO += ds; srcO += stride; } } void MNN1BitCopyFast (uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) { int cnt = size; uint8_t val = *srcO; if (stride == 1) { #ifdef MNN_USE_SSE for (; cnt >= 16; cnt-=16) { auto tmp = _mm_loadu_ps((float*)srcO); _mm_storeu_ps((float*)dstO, tmp); srcO += 16; dstO += 16; } #elif defined(MNN_USE_NEON) for (; cnt >= 16; cnt-=16) { auto val16 = vld1q_u8(srcO); vst1q_u8(dstO, val16); srcO += 16; dstO += 16; } for (; cnt >= 8; cnt-=8) { auto val8 = vld1_u8(srcO); vst1_u8(dstO, val8); srcO += 8; dstO += 8; } #endif } else { // stride=0 #ifdef MNN_USE_SSE std::vector<uint8_t> arr(16, val); auto val16 = _mm_loadu_ps((float*)arr.data()); for (; cnt >= 16; cnt-=16) { _mm_storeu_ps((float*)dstO, val16); dstO += 16; } #elif defined(MNN_USE_NEON) auto val16 = vdupq_n_u8(val); auto val8 = vdup_n_u8(val); for (; cnt >= 16; cnt-=16) { vst1q_u8(dstO, val16); dstO += 16; } for (; cnt >= 8; cnt-=8) { vst1_u8(dstO, val8); dstO += 8; } #endif } for (; cnt > 0; --cnt) { dstO[0] = *srcO; dstO += ds; srcO += stride; } } void MNNAccumulateSequenceNumber (float* dst, const float* src, int size) { // mode: 0:Add, 1:Sub, 2:Min, 3:Max int size8 = (size / 8) * 8; int i = 0; float sum = 0.f; float tmp[4]; #ifdef MNN_USE_NEON if (size >= 8) { auto sum4_1 = vdupq_n_f32(0.f); auto sum4_2 = vdupq_n_f32(0.f); for (; i < size8; i += 8) { auto v4 = vld1q_f32(src); auto u4 = vld1q_f32(src + 4); sum4_1 = vaddq_f32(sum4_1, v4); sum4_2 = vaddq_f32(sum4_2, u4); src += 8; } sum4_1 = vaddq_f32(sum4_1, sum4_2); sum = (sum4_1[0] + sum4_1[1]) + (sum4_1[2] + sum4_1[3]); } #elif defined(MNN_USE_SSE) if (size >= 8) { auto sum4_1 = _mm_set_ps1(0.f); auto sum4_2 = _mm_set_ps1(0.f); for (; i < size8; i += 8) { auto v4 = _mm_loadu_ps(src); auto u4 = _mm_loadu_ps(src + 4); sum4_1 = _mm_add_ps(sum4_1, v4); sum4_2 = _mm_add_ps(sum4_2, u4); src += 8; } sum4_1 = _mm_add_ps(sum4_1, sum4_2); _mm_storeu_ps(tmp, sum4_1); sum += (tmp[0] + tmp[1] + tmp[2] + tmp[3]); } #endif for (; i < size; ++i) { sum += (*src); src += 1; } *dst = sum; } #ifndef MNN_USE_NEON void MNNGetMatMulPackMode(int* eP, int *lP, int* hP) { *eP = 16; *lP = 1; *hP = 4; } void MNNGetSparseMatMulPackMode(int* eP, int *lP, int* hP) { *eP = 16; *lP = 1; *hP = 4; // hp is corresponding to sparse block along right matrix colum dimension. in ramdom sparse, it is 1. return; } void MNNPackForMatMul_B(float* dest, const float* source, size_t h, size_t l, bool transpose) { auto hP = h / 4; auto hR = hP * 4; if (hR != h) { ::memset(dest, 0, UP_DIV(h, 4)*4*l*sizeof(float)); } if (!transpose) { for (int y=0; y<hP; ++y) { auto destY = dest + y * 4 * l; auto sourceY = source + y * 4; for (int x=0; x<l; ++x) { ::memcpy(destY + 4 * x, sourceY + x * h, 4 * sizeof(float)); } } auto hRemain = h - hR; if (hRemain > 0) { auto destY = dest + hP * 4 * l; auto sourceY = source + hP * 4; for (int x=0; x<l; ++x) { ::memcpy(destY + 4 * x, sourceY + x * h, hRemain * sizeof(float)); } } return; } int offset[] = { (int)l, (int)l }; MNNPackC4(dest, source, l, h, offset); } static void _MNNPackedMatMulRemain(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, int aStride) { auto h = parameter[2]; auto l = parameter[1]; auto cStride = parameter[3] / sizeof(float); auto hRemain = parameter[4]; auto bExtraStride = parameter[5] / sizeof(float); auto bStride = bExtraStride + l * 4; auto hC4 = UP_DIV(h, 4); for (int y=0; y<hC4; ++y) { ::memset(C + y * cStride, 0, eSize * 4 * sizeof(float)); } float alpha = 1.0f; float beta = 0.0f; float minValue = -std::numeric_limits<float>().max(); float maxValue = std::numeric_limits<float>().max(); if (nullptr != postParameters) { minValue = postParameters[2]; maxValue = postParameters[3]; alpha = postParameters[0]; beta = postParameters[1]; } for (int x=0; x<eSize; ++x) { auto dst = C + 4 * x; auto src = A + x; for (int y=0; y<hC4; ++y) { auto dstY = dst + y * cStride; auto weight = B + y * bStride; float summer[4] = { 0.0f, 0.0f, 0.0f, 0.0f, }; if (nullptr != bias) { for (int v=0; v<4; ++v) { summer[v] = bias[4 * y + v]; } } for (int z=0; z<l; ++z) { auto aZ = src + z * aStride; auto wZ = weight + z * 4; summer[0] += wZ[0] * aZ[0]; summer[1] += wZ[1] * aZ[0]; summer[2] += wZ[2] * aZ[0]; summer[3] += wZ[3] * aZ[0]; } for (int v=0; v<4; ++v) { auto dstValue = std::min(summer[v], maxValue); dstValue = std::max(dstValue, minValue); dstY[v] = dstValue; } } } } void MNNPackedMatMul(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { return _MNNPackedMatMulRemain(C, A, B, 16, parameter, postParameters, bias, 16); } void MNNPackedMatMulRemain(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) { auto aStride = parameter[0] / sizeof(float); _MNNPackedMatMulRemain(C, A, B, eSize, parameter, postParameters, bias, aStride); } void MNNPackC4ForMatMul_A(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el) { int number = info[0]; int eReal = info[1]; int eDest = info[2]; int offset = info[3]; for (int n=0; n<number; ++n) { int e = el[4 * n + 0]; int l = el[4 * n + 1]; int eOffset = el[4 * n + 2]; int lOffset = el[4 * n + 3]; auto dest = destOrigin + lOffset * eDest + eOffset; auto source = sourceGroup[n]; for (int y=0; y<e; ++y) { auto yR = y % eDest; for (int x=0; x<l; ++x) { auto xR = x % 4; auto xC = x / 4; dest[(x) * eDest + yR] = source[xC * eReal * 4 + y * 4 * offset + xR]; } } } } void MNNPackedSparseMatMulEpx1(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap) { auto eP = parameter[0] / sizeof(float); MNN_ASSERT((eP & 0x03) == 0); // In sparse calculate, eP should be evenly divided by 4 auto h = parameter[2]; auto l = parameter[1]; auto cStride = parameter[3] / sizeof(float); auto aStride = eP * l; auto hRemain = parameter[4]; auto bExtraStride = parameter[5] / sizeof(float); auto bStride = bExtraStride + l * 4; auto hC4 = UP_DIV(h, 4); float minValue = -std::numeric_limits<float>().max(); float maxValue = std::numeric_limits<float>().max(); if (nullptr != postParameters) { minValue = postParameters[2]; maxValue = postParameters[3]; } // MNN_PRINT("MNNPackedSparseMatMul eP:%lu, eSize:%lu, l:%lu, h:%lu, cStride:%lu, aStride:%lu\n", eP, eSize, l, h, cStride, aStride); const float* a = A; size_t ie = 0; for (ie = 0; ie < eSize && eP <= eSize; ie += eP) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; for (auto ih = 0; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihPack * cStride + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; float acc4 = initValue; float acc5 = initValue; float acc6 = initValue; float acc7 = initValue; float acc8 = initValue; float acc9 = initValue; float acc10 = initValue; float acc11 = initValue; float acc12 = initValue; float acc13 = initValue; float acc14 = initValue; float acc15 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float a8 = a[8]; const float a9 = a[9]; const float a10 = a[10]; const float a11 = a[11]; const float a12 = a[12]; const float a13 = a[13]; const float a14 = a[14]; const float a15 = a[15]; const float oneW = *w++; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; acc4 += a4 * oneW; acc5 += a5 * oneW; acc6 += a6 * oneW; acc7 += a7 * oneW; acc8 += a8 * oneW; acc9 += a9 * oneW; acc10 += a10 * oneW; acc11 += a11 * oneW; acc12 += a12 * oneW; acc13 += a13 * oneW; acc14 += a14 * oneW; acc15 += a15 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); acc4 = std::max(std::min(maxValue, acc4), minValue); acc5 = std::max(std::min(maxValue, acc5), minValue); acc6 = std::max(std::min(maxValue, acc6), minValue); acc7 = std::max(std::min(maxValue, acc7), minValue); acc8 = std::max(std::min(maxValue, acc8), minValue); acc9 = std::max(std::min(maxValue, acc9), minValue); acc10 = std::max(std::min(maxValue, acc10), minValue); acc11 = std::max(std::min(maxValue, acc11), minValue); acc12 = std::max(std::min(maxValue, acc12), minValue); acc13 = std::max(std::min(maxValue, acc13), minValue); acc14 = std::max(std::min(maxValue, acc14), minValue); acc15 = std::max(std::min(maxValue, acc15), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; c[4 * 4] = acc4; c[4 * 5] = acc5; c[4 * 6] = acc6; c[4 * 7] = acc7; c[4 * 8] = acc8; c[4 * 9] = acc9; c[4 * 10] = acc10; c[4 * 11] = acc11; c[4 * 12] = acc12; c[4 * 13] = acc13; c[4 * 14] = acc14; c[4 * 15] = acc15; } a += aStride; } // const float* blockA = A + ie * l; if (eSize & 0x08) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; for (auto ih = 0; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihPack * cStride + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; float acc4 = initValue; float acc5 = initValue; float acc6 = initValue; float acc7 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float oneW = *w++; // MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-7]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {8}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; acc4 += a4 * oneW; acc5 += a5 * oneW; acc6 += a6 * oneW; acc7 += a7 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); acc4 = std::max(std::min(maxValue, acc4), minValue); acc5 = std::max(std::min(maxValue, acc5), minValue); acc6 = std::max(std::min(maxValue, acc6), minValue); acc7 = std::max(std::min(maxValue, acc7), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; c[4 * 4] = acc4; c[4 * 5] = acc5; c[4 * 6] = acc6; c[4 * 7] = acc7; } ie += 8; a += 8; } if (eSize & 0x04) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; for (auto ih = 0; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihPack * cStride + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float oneW = *w++; // MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-3]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {4}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; } ie += 4; a += 4; } if (eSize & 0x02) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; for (auto ih = 0; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihPack * cStride + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float oneW = *w++; // MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-1]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {2}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; } ie += 2; a += 2; } if (eSize & 0x01) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; for (auto ih = 0; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihPack * cStride + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float oneW = *w++; // MNN_PRINT("1-loop: ie:%zu, a offset:%ld, c offset:%ld, w offset:%ld, w value:%f, a value[0]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {1}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); // how to store faster: st4 / transpose / c[0] = acc0; } ie += 1; // a += 1; } return; } void MNNPackedSparseMatMulEpx4(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap) { auto eP = parameter[0] / sizeof(float); MNN_ASSERT((eP & 0x03) == 0); // In sparse calculate, eP should be evenly divided by 4 auto h = parameter[2]; auto l = parameter[1]; auto cStride = parameter[3] / sizeof(float); auto aStride = eP * l; auto hRemain = parameter[4]; auto bExtraStride = parameter[5] / sizeof(float); auto bStride = bExtraStride + l * 4; auto hC4 = UP_DIV(h, 4); float minValue = -std::numeric_limits<float>().max(); float maxValue = std::numeric_limits<float>().max(); if (nullptr != postParameters) { minValue = postParameters[2]; maxValue = postParameters[3]; } // MNN_PRINT("MNNPackedSparseMatMul 16x4 eP:%lu, eSize:%lu, l:%lu, h:%lu, cStride:%lu, aStride:%lu\n", eP, eSize, l, h, cStride, aStride); const int sparseBlockOC = 4; const float* a = A; size_t ie = 0; for (ie = 0; ie < eSize && eP <= eSize; ie += eP) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; size_t ih = 0; for (; ih < (h & (~0x03)); ih += sparseBlockOC) { auto ihPack = ih >> 2; auto c = blockC + ihPack * cStride; float initValue[4] = {0, 0, 0, 0}; if (nullptr != bias) { memcpy(initValue, bias + ih, 4 * sizeof(float)); } float acc0[4]; float acc1[4]; float acc2[4]; float acc3[4]; float acc4[4]; float acc5[4]; float acc6[4]; float acc7[4]; float acc8[4]; float acc9[4]; float acc10[4]; float acc11[4]; float acc12[4]; float acc13[4]; float acc14[4]; float acc15[4]; memcpy(acc0, initValue, 4 * sizeof(float)); memcpy(acc1, initValue, 4 * sizeof(float)); memcpy(acc2, initValue, 4 * sizeof(float)); memcpy(acc3, initValue, 4 * sizeof(float)); memcpy(acc4, initValue, 4 * sizeof(float)); memcpy(acc5, initValue, 4 * sizeof(float)); memcpy(acc6, initValue, 4 * sizeof(float)); memcpy(acc7, initValue, 4 * sizeof(float)); memcpy(acc8, initValue, 4 * sizeof(float)); memcpy(acc9, initValue, 4 * sizeof(float)); memcpy(acc10, initValue, 4 * sizeof(float)); memcpy(acc11, initValue, 4 * sizeof(float)); memcpy(acc12, initValue, 4 * sizeof(float)); memcpy(acc13, initValue, 4 * sizeof(float)); memcpy(acc14, initValue, 4 * sizeof(float)); memcpy(acc15, initValue, 4 * sizeof(float)); const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float a8 = a[8]; const float a9 = a[9]; const float a10 = a[10]; const float a11 = a[11]; const float a12 = a[12]; const float a13 = a[13]; const float a14 = a[14]; const float a15 = a[15]; const float wv[4] = {*w++, *w++, *w++, *w++}; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; for (int lane = 0; lane < 4; lane++) { acc0[lane] += a0 * wv[lane]; acc1[lane] += a1 * wv[lane]; acc2[lane] += a2 * wv[lane]; acc3[lane] += a3 * wv[lane]; acc4[lane] += a4 * wv[lane]; acc5[lane] += a5 * wv[lane]; acc6[lane] += a6 * wv[lane]; acc7[lane] += a7 * wv[lane]; acc8[lane] += a8 * wv[lane]; acc9[lane] += a9 * wv[lane]; acc10[lane] += a10 * wv[lane]; acc11[lane] += a11 * wv[lane]; acc12[lane] += a12 * wv[lane]; acc13[lane] += a13 * wv[lane]; acc14[lane] += a14 * wv[lane]; acc15[lane] += a15 * wv[lane]; } } for (int lane = 0; lane < 4; lane++) { acc0[lane] = std::max(std::min(maxValue, acc0[lane]), minValue); acc1[lane] = std::max(std::min(maxValue, acc1[lane]), minValue); acc2[lane] = std::max(std::min(maxValue, acc2[lane]), minValue); acc3[lane] = std::max(std::min(maxValue, acc3[lane]), minValue); acc4[lane] = std::max(std::min(maxValue, acc4[lane]), minValue); acc5[lane] = std::max(std::min(maxValue, acc5[lane]), minValue); acc6[lane] = std::max(std::min(maxValue, acc6[lane]), minValue); acc7[lane] = std::max(std::min(maxValue, acc7[lane]), minValue); acc8[lane] = std::max(std::min(maxValue, acc8[lane]), minValue); acc9[lane] = std::max(std::min(maxValue, acc9[lane]), minValue); acc10[lane] = std::max(std::min(maxValue, acc10[lane]), minValue); acc11[lane] = std::max(std::min(maxValue, acc11[lane]), minValue); acc12[lane] = std::max(std::min(maxValue, acc12[lane]), minValue); acc13[lane] = std::max(std::min(maxValue, acc13[lane]), minValue); acc14[lane] = std::max(std::min(maxValue, acc14[lane]), minValue); acc15[lane] = std::max(std::min(maxValue, acc15[lane]), minValue); } memcpy(c, acc0, 4 * sizeof(float)); // store continuous c memcpy(c + 4, acc1, 4 * sizeof(float)); memcpy(c + 4 * 2, acc2, 4 * sizeof(float)); memcpy(c + 4 * 3, acc3, 4 * sizeof(float)); memcpy(c + 4 * 4, acc4, 4 * sizeof(float)); memcpy(c + 4 * 5, acc5, 4 * sizeof(float)); memcpy(c + 4 * 6, acc6, 4 * sizeof(float)); memcpy(c + 4 * 7, acc7, 4 * sizeof(float)); memcpy(c + 4 * 8, acc8, 4 * sizeof(float)); memcpy(c + 4 * 9, acc9, 4 * sizeof(float)); memcpy(c + 4 * 10, acc10, 4 * sizeof(float)); memcpy(c + 4 * 11, acc11, 4 * sizeof(float)); memcpy(c + 4 * 12, acc12, 4 * sizeof(float)); memcpy(c + 4 * 13, acc13, 4 * sizeof(float)); memcpy(c + 4 * 14, acc14, 4 * sizeof(float)); memcpy(c + 4 * 15, acc15, 4 * sizeof(float)); } blockC += (h >> 2) * cStride; for (; ih < h; ih++) { auto ihSubIndex = ih & 0x03; auto c = blockC + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; float acc4 = initValue; float acc5 = initValue; float acc6 = initValue; float acc7 = initValue; float acc8 = initValue; float acc9 = initValue; float acc10 = initValue; float acc11 = initValue; float acc12 = initValue; float acc13 = initValue; float acc14 = initValue; float acc15 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float a8 = a[8]; const float a9 = a[9]; const float a10 = a[10]; const float a11 = a[11]; const float a12 = a[12]; const float a13 = a[13]; const float a14 = a[14]; const float a15 = a[15]; const float oneW = *w++; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; acc4 += a4 * oneW; acc5 += a5 * oneW; acc6 += a6 * oneW; acc7 += a7 * oneW; acc8 += a8 * oneW; acc9 += a9 * oneW; acc10 += a10 * oneW; acc11 += a11 * oneW; acc12 += a12 * oneW; acc13 += a13 * oneW; acc14 += a14 * oneW; acc15 += a15 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); acc4 = std::max(std::min(maxValue, acc4), minValue); acc5 = std::max(std::min(maxValue, acc5), minValue); acc6 = std::max(std::min(maxValue, acc6), minValue); acc7 = std::max(std::min(maxValue, acc7), minValue); acc8 = std::max(std::min(maxValue, acc8), minValue); acc9 = std::max(std::min(maxValue, acc9), minValue); acc10 = std::max(std::min(maxValue, acc10), minValue); acc11 = std::max(std::min(maxValue, acc11), minValue); acc12 = std::max(std::min(maxValue, acc12), minValue); acc13 = std::max(std::min(maxValue, acc13), minValue); acc14 = std::max(std::min(maxValue, acc14), minValue); acc15 = std::max(std::min(maxValue, acc15), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; c[4 * 4] = acc4; c[4 * 5] = acc5; c[4 * 6] = acc6; c[4 * 7] = acc7; c[4 * 8] = acc8; c[4 * 9] = acc9; c[4 * 10] = acc10; c[4 * 11] = acc11; c[4 * 12] = acc12; c[4 * 13] = acc13; c[4 * 14] = acc14; c[4 * 15] = acc15; } a += aStride; } // const float* blockA = A + ie * l; if (eSize & 0x08) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; size_t ih = 0; for (; ih < (h & (~0x03)); ih += sparseBlockOC) { auto ihPack = ih >> 2; auto c = blockC + ihPack * cStride; float initValue[4] = {0, 0, 0, 0}; if (nullptr != bias) { memcpy(initValue, bias + ih, 4 * sizeof(float)); } float acc0[4]; float acc1[4]; float acc2[4]; float acc3[4]; float acc4[4]; float acc5[4]; float acc6[4]; float acc7[4]; memcpy(acc0, initValue, 4 * sizeof(float)); memcpy(acc1, initValue, 4 * sizeof(float)); memcpy(acc2, initValue, 4 * sizeof(float)); memcpy(acc3, initValue, 4 * sizeof(float)); memcpy(acc4, initValue, 4 * sizeof(float)); memcpy(acc5, initValue, 4 * sizeof(float)); memcpy(acc6, initValue, 4 * sizeof(float)); memcpy(acc7, initValue, 4 * sizeof(float)); const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float wv[4] = {*w++, *w++, *w++, *w++}; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; for (int lane = 0; lane < 4; lane++) { acc0[lane] += a0 * wv[lane]; acc1[lane] += a1 * wv[lane]; acc2[lane] += a2 * wv[lane]; acc3[lane] += a3 * wv[lane]; acc4[lane] += a4 * wv[lane]; acc5[lane] += a5 * wv[lane]; acc6[lane] += a6 * wv[lane]; acc7[lane] += a7 * wv[lane]; } } for (int lane = 0; lane < 4; lane++) { acc0[lane] = std::max(std::min(maxValue, acc0[lane]), minValue); acc1[lane] = std::max(std::min(maxValue, acc1[lane]), minValue); acc2[lane] = std::max(std::min(maxValue, acc2[lane]), minValue); acc3[lane] = std::max(std::min(maxValue, acc3[lane]), minValue); acc4[lane] = std::max(std::min(maxValue, acc4[lane]), minValue); acc5[lane] = std::max(std::min(maxValue, acc5[lane]), minValue); acc6[lane] = std::max(std::min(maxValue, acc6[lane]), minValue); acc7[lane] = std::max(std::min(maxValue, acc7[lane]), minValue); } memcpy(c, acc0, 4 * sizeof(float)); // store continuous c memcpy(c + 4, acc1, 4 * sizeof(float)); memcpy(c + 4 * 2, acc2, 4 * sizeof(float)); memcpy(c + 4 * 3, acc3, 4 * sizeof(float)); memcpy(c + 4 * 4, acc4, 4 * sizeof(float)); memcpy(c + 4 * 5, acc5, 4 * sizeof(float)); memcpy(c + 4 * 6, acc6, 4 * sizeof(float)); memcpy(c + 4 * 7, acc7, 4 * sizeof(float)); } blockC += (ih >> 2) * cStride; for (; ih < h; ih++) { auto ihSubIndex = ih & 0x03; auto c = blockC + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; float acc4 = initValue; float acc5 = initValue; float acc6 = initValue; float acc7 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float a4 = a[4]; const float a5 = a[5]; const float a6 = a[6]; const float a7 = a[7]; const float oneW = *w++; // MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-7]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {8}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; acc4 += a4 * oneW; acc5 += a5 * oneW; acc6 += a6 * oneW; acc7 += a7 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); acc4 = std::max(std::min(maxValue, acc4), minValue); acc5 = std::max(std::min(maxValue, acc5), minValue); acc6 = std::max(std::min(maxValue, acc6), minValue); acc7 = std::max(std::min(maxValue, acc7), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; c[4 * 4] = acc4; c[4 * 5] = acc5; c[4 * 6] = acc6; c[4 * 7] = acc7; } ie += 8; a += 8; } if (eSize & 0x04) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; size_t ih = 0; for (; ih < (h & (~0x03)); ih += sparseBlockOC) { auto ihPack = ih >> 2; auto c = blockC + ihPack * cStride; float initValue[4] = {0, 0, 0, 0}; if (nullptr != bias) { memcpy(initValue, bias + ih, 4 * sizeof(float)); } float acc0[4]; float acc1[4]; float acc2[4]; float acc3[4]; memcpy(acc0, initValue, 4 * sizeof(float)); memcpy(acc1, initValue, 4 * sizeof(float)); memcpy(acc2, initValue, 4 * sizeof(float)); memcpy(acc3, initValue, 4 * sizeof(float)); const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float wv[4] = {*w++, *w++, *w++, *w++}; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; for (int lane = 0; lane < 4; lane++) { acc0[lane] += a0 * wv[lane]; acc1[lane] += a1 * wv[lane]; acc2[lane] += a2 * wv[lane]; acc3[lane] += a3 * wv[lane]; } } for (int lane = 0; lane < 4; lane++) { acc0[lane] = std::max(std::min(maxValue, acc0[lane]), minValue); acc1[lane] = std::max(std::min(maxValue, acc1[lane]), minValue); acc2[lane] = std::max(std::min(maxValue, acc2[lane]), minValue); acc3[lane] = std::max(std::min(maxValue, acc3[lane]), minValue); } memcpy(c, acc0, 4 * sizeof(float)); // store continuous c memcpy(c + 4, acc1, 4 * sizeof(float)); memcpy(c + 4 * 2, acc2, 4 * sizeof(float)); memcpy(c + 4 * 3, acc3, 4 * sizeof(float)); } blockC += (ih >> 2) * cStride; for (; ih < h; ih++) { auto ihSubIndex = ih & 0x03; auto c = blockC + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; float acc2 = initValue; float acc3 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float a2 = a[2]; const float a3 = a[3]; const float oneW = *w++; // MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-3]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {4}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; acc2 += a2 * oneW; acc3 += a3 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); acc2 = std::max(std::min(maxValue, acc2), minValue); acc3 = std::max(std::min(maxValue, acc3), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; c[4 * 2] = acc2; c[4 * 3] = acc3; } ie += 4; a += 4; } if (eSize & 0x02) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; size_t ih = 0; for (; ih < (h & (~0x03)); ih += sparseBlockOC) { auto ihPack = ih >> 2; auto c = blockC + ihPack * cStride; float initValue[4] = {0, 0, 0, 0}; if (nullptr != bias) { memcpy(initValue, bias + ih, 4 * sizeof(float)); } float acc0[4]; float acc1[4]; memcpy(acc0, initValue, 4 * sizeof(float)); memcpy(acc1, initValue, 4 * sizeof(float)); const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float wv[4] = {*w++, *w++, *w++, *w++}; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; for (int lane = 0; lane < 4; lane++) { acc0[lane] += a0 * wv[lane]; acc1[lane] += a1 * wv[lane]; } } for (int lane = 0; lane < 4; lane++) { acc0[lane] = std::max(std::min(maxValue, acc0[lane]), minValue); acc1[lane] = std::max(std::min(maxValue, acc1[lane]), minValue); } memcpy(c, acc0, 4 * sizeof(float)); // store continuous c memcpy(c + 4, acc1, 4 * sizeof(float)); } blockC += (ih >> 2) * cStride; for (; ih < h; ih++) { auto ihPack = ih >> 2; auto ihSubIndex = ih & 0x03; auto c = blockC + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; float acc1 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float a1 = a[1]; const float oneW = *w++; // MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-1]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {2}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; acc1 += a1 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); acc1 = std::max(std::min(maxValue, acc1), minValue); // how to store faster: st4 / transpose / c[0] = acc0; c[4] = acc1; } ie += 2; a += 2; } if (eSize & 0x01) { const int* dataOffset = dataOffsetMap; const int diff = *dataOffset++; // const float* a = blockA + diff; a += diff; const float* w = B; float* blockC = C + (ie << 2); const unsigned int* nnz = NNZMap; size_t ih = 0; for (; ih < (h & (~0x03)); ih += sparseBlockOC) { auto ihPack = ih >> 2; auto c = blockC + ihPack * cStride; float initValue[4] = {0, 0, 0, 0}; if (nullptr != bias) { memcpy(initValue, bias + ih, 4 * sizeof(float)); } float acc0[4]; memcpy(acc0, initValue, 4 * sizeof(float)); const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float wv[4] = {*w++, *w++, *w++, *w++}; // MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {16}); // MNN_PRINT("\n"); a = a + diff; for (int lane = 0; lane < 4; lane++) { acc0[lane] += a0 * wv[lane]; } } for (int lane = 0; lane < 4; lane++) { acc0[lane] = std::max(std::min(maxValue, acc0[lane]), minValue); } memcpy(c, acc0, 4 * sizeof(float)); // store continuous c } blockC += (ih >> 2) * cStride; for (; ih < h; ih++) { auto ihSubIndex = ih & 0x03; auto c = blockC + ihSubIndex; const float initValue = nullptr != bias ? bias[ih] : 0; float acc0 = initValue; const int lElement = *nnz++; for (auto il = 0; il < lElement; il++) { const int diff = *dataOffset++; const float a0 = a[0]; const float oneW = *w++; // MNN_PRINT("1-loop: ie:%zu, a offset:%ld, c offset:%ld, w offset:%ld, w value:%f, a value[0]:", ie, a - A, w - B - 1, c - C, oneW); // formatMatrix(a, {1}); // MNN_PRINT("\n"); a = a + diff; acc0 += a0 * oneW; } acc0 = std::max(std::min(maxValue, acc0), minValue); // how to store faster: st4 / transpose / c[0] = acc0; } ie += 1; // a += 1; } return; } #endif #ifndef MNN_USE_SSE #ifndef MNN_USE_NEON void MNNTranspose32Bit(int32_t* dstO, const int32_t* srcO, int32_t* dim) { int w = dim[0]; int h = dim[1]; int srcStride = dim[2]; int dstStride = dim[3]; for (int i=0; i<h; ++i) { auto si = srcO + i; auto di = dstO + i * dstStride; for (int j=0; j<w; ++j) { auto sj = si + j * srcStride; auto dj = di + j; *dj = *sj; } } } void MNNTranspose16Bit(int16_t* dstO, const int16_t* srcO, int32_t* dim) { int w = dim[0]; int h = dim[1]; int srcStride = dim[2]; int dstStride = dim[3]; for (int i=0; i<h; ++i) { auto si = srcO + i; auto di = dstO + i * dstStride; for (int j=0; j<w; ++j) { auto sj = si + j * srcStride; auto dj = di + j; *dj = *sj; } } } #endif void MNNFunctionInit() { // Do nothing } #endif #ifdef MNN_USE_NEON #include <arm_neon.h> #endif #define UNIT 4 using Vec4 = MNN::Math::Vec<float, 4>; #ifndef MNN_USE_NEON #ifndef MNN_USE_SSE void MNNCopyC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count) { for (int i = 0; i < count; ++i) { auto s = source + i * srcStride; auto d = dest + i * dstStride; for (int j = 0; j < 4; ++j) { d[j] = s[j]; } } } void MNNAddC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count) { for (int i = 0; i < count; ++i) { auto s = source + i * srcStride; auto d = dest + i * dstStride; for (int j = 0; j < 4; ++j) { d[j] += s[j]; } } } void MNNReluWithSlopeChannel(float* dst, const float* src, const float* slope, size_t sizeQuad, size_t depthQuad) { for (int j = 0; j < depthQuad; j++) { const float* slopeZ = slope + 4 * j; const float* srcZ = src + 4 * j * sizeQuad; float* dstZ = dst + 4 * j * sizeQuad; for (int i = 0; i < sizeQuad; i++) { for (int c = 0; c < 4; c++) { if (srcZ[4 * i + c] < 0) { dstZ[4 * i + c] = srcZ[4 * i + c] * slopeZ[c]; } else { dstZ[4 * i + c] = srcZ[4 * i + c]; } } } } } void MNNPackC4(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { MNNPackC4Common<float>(dst, src, area, depth, areaOffset); } void MNNUnpackC4(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { MNNUnpackC4Common<float>(dst, src, area, depth, areaOffset); } void MNNExpC8(float* dest, const float* source, float* offset, const float* parameters, size_t countC8) { auto count = countC8 * 8; auto param = parameters[0]; float xLimit = 87; float summer = offset[3]; for (int i = 0; i < count; ++i) { auto x = source[i] * offset[0] + offset[2]; x = ALIMAX(x, -xLimit); x = ALIMIN(x, xLimit); int div = (x * parameters[1]); int div2 = (div + 127) << 23; auto xReamin = x - div * param; float expBasic = *(float*)(&div2); auto t = xReamin * 0.25f; auto expRemain = ((((parameters[7] * t + parameters[6]) * t + parameters[5]) * t + parameters[4]) * t + 1.0f) * t + 1.0f; expRemain = expRemain * expRemain; expRemain = expRemain * expRemain; dest[i] = expBasic * expRemain + offset[1]; summer+= dest[i]; } offset[3] = summer; } void MNNSoftmax(float* dest, const float* source, size_t size) { float maxValue = ALIMAX(source[0], source[1]); for (int i = 2; i < size; ++i) { maxValue = ALIMAX(maxValue, source[i]); } float xLimit = 87, param = 0.6931471805599453, sumValue = 0.f; for (int i = 0; i < size; ++i) { auto x = source[i] - maxValue; x = x > -xLimit ? x : -xLimit; x = x < xLimit ? x : xLimit; int div = (x / param); int div2 = (div + 127) << 23; auto xReamin = x - div * param; float expBasic = *(float*)(&div2); auto t = xReamin; auto expRemain = ((((1.0f / 120 * t + 1.0f / 24) * t + 1.0f / 6) * t + 0.5f) * t + 1.0f) * t + 1.0f; dest[i] = expBasic * expRemain; sumValue += dest[i]; } sumValue = 1.f / sumValue; for (int i = 0; i < size; ++i) { dest[i] *= sumValue; } } void MNNReluInt8(int8_t* dst, const int8_t* src, size_t size, ssize_t zeroPoint) { for (int i = 0; i < size; ++i) { if (src[i] < zeroPoint) { dst[i] = zeroPoint; } else { dst[i] = src[i]; } } } #endif // no MNN_USE_SSE void MNNMaxFloat(float* input, float* maxBuffer, int32_t inputCountUnit) { for (int i = 0; i < inputCountUnit; i++) { for (int j = 0; j < UNIT; j++) { for (int m = 0; m < 2; m++) { maxBuffer[j] = std::max(input[i * UNIT * 2 + j * 2 + m], maxBuffer[j]); } } } } void MNNMinFloat(float* input, float* minBuffer, int32_t inputCountUnit) { for (int i = 0; i < inputCountUnit; i++) { for (int j = 0; j < UNIT; j++) { for (int m = 0; m < 2; m++) { minBuffer[j] = std::min(input[i * UNIT * 2 + j * 2 + m], minBuffer[j]); } } } } void MNNScaleAndAddBias(float* dst, const float* src, const float* bias, const float* alpha, size_t planeNumber, size_t biasNumber) { for (int z = 0; z < biasNumber; ++z) { float* dstZ = dst + planeNumber * 4 * z; const float* srcZ = src + planeNumber * 4 * z; auto biasZ = Vec4::load(bias + 4 * z); auto alphaZ = Vec4::load(alpha + 4 * z); for (int p = 0; p < planeNumber; ++p) { float* dstX = dstZ + 4 * p; const float* srcX = srcZ + 4 * p; Vec4::save(dstX, (Vec4::load(srcX) * alphaZ) + biasZ); } } } void MNNUInt8ToInt16WithOffsetC4Common(int16_t* dst, const uint8_t* src, size_t zeroPoint, size_t sizeQuad, size_t dstStride, size_t srcStride) { dstStride /= sizeof(int16_t); srcStride /= sizeof(uint8_t); for (int z = 0; z < sizeQuad; ++z) { auto dstZ = dst + dstStride * z; auto srcZ = src + srcStride * z; for (int j = 0; j < 4; ++j) { dstZ[j] = (int16_t)((int32_t)srcZ[j] - (int32_t)zeroPoint); } } } void MNNUInt8ToInt16WithOffsetC4Fast(int16_t* colAddr, const uint8_t* srcStart, size_t zeroPoint, size_t sizeQuad, size_t depthQuad, size_t dstZStep, size_t srcZStep) { dstZStep /= sizeof(int16_t); srcZStep /= sizeof(uint8_t); for (int sz = 0; sz < depthQuad; ++sz) { auto dstZ = colAddr + sz * dstZStep; auto srcZ = srcStart + sz * srcZStep; MNNUInt8ToInt16WithOffsetC4Common(dstZ, srcZ, zeroPoint, sizeQuad, 4 * sizeof(int16_t), 4 * sizeof(uint8_t)); } } void MNNPowC8(float* dest, const float* source, const float* powfParam, size_t betaInt, size_t countC8) { const int count = countC8 * 8; const float powfConstant = powfParam[6]; for (int i = 0; i < count; ++i) { float result = 1, x, xInv = 1 / source[i]; for (int j = 0; j < betaInt; result *= xInv, ++j) ; for (x = source[i]; x >= 1.25; x /= 1.5, result *= powfConstant) ; float t = x - 1; float powRemain = powfParam[0] + t * (powfParam[1] + t * (powfParam[2] + t * (powfParam[3] + t * (powfParam[4] + t * powfParam[5])))); result *= powRemain; dest[i] = result; } } #endif // no MNN_USE_NEON void MNNGridSampleComputeCord(float* dst, const float* src, size_t inH, size_t inW, size_t outH, size_t outW, bool alignCorners) { float a = alignCorners ? 1.0f : 0.0f; float b = alignCorners ? 0.0f : 1.0f; int area = outH * outW; float kx = 0.5f * ((float)inW - a); float bx = 0.5f * ((float)inW - a - b); float ky = 0.5f * ((float)inH - a); float by = 0.5f * ((float)inH - a - b); for (int w = 0; w < area; ++w) { auto x = src[2 * w + 0]; auto y = src[2 * w + 1]; dst[2 * w + 0] = kx * x + bx; dst[2 * w + 1] = ky * y + by; } } void MNNGridSampleComputeCord3D(float* dst, const float* src, size_t inD, size_t inH, size_t inW, size_t outD, size_t outH, size_t outW, bool alignCorners) { int strideD = outH * outW * 3; int strideH = outW * 3; float a = alignCorners ? 1.0f : 0.0f; float b = alignCorners ? 0.0f : 1.0f; int area = outD * outH * outW; float kx = 0.5f * ((float)inW - a); float bx = 0.5f * ((float)inW - a - b); float ky = 0.5f * ((float)inH - a); float by = 0.5f * ((float)inH - a - b); float kz = 0.5f * ((float)inD - a); float bz = 0.5f * ((float)inD - a - b); for (int w=0; w<area; ++w) { auto x = src[3 * w + 0]; auto y = src[3 * w + 1]; auto z = src[3 * w + 2]; dst[3 * w + 0] = kx * x + bx; dst[3 * w + 1] = ky * y + by; dst[3 * w + 2] = kz * z + bz; } } #ifndef MNN_USE_SSE void MNNNorm(float *dst, const float *src, const float *gamma, const float *beta, float epsilon, size_t size, bool RMSNorm) { float mean = 0; if(false == RMSNorm){ float sum = 0.f; for (int j = 0; j < size; ++j) { sum += src[j]; } mean = sum / size; } float square_sum = 0.f; for (int j = 0; j < size; ++j) { square_sum += (src[j] - mean) * (src[j] - mean); } #ifdef __aarch64__ auto vs = vadd_f32(vdiv_f32(vdup_n_f32(square_sum), vdup_n_f32(size)), vdup_n_f32(epsilon)); auto vecs = vdiv_f32(vdup_n_f32(1.0f), vsqrt_f32(vs)); float vars[2]; vst1_f32(vars, vecs); float variable = vars[0]; #else float variable = square_sum / size; variable = 1.f / std::sqrt(variable + epsilon); #endif if (gamma && beta) { for (int j = 0; j < size; ++j) { dst[j] = (src[j] - mean) * variable * gamma[j] + beta[j]; } } else { for (int j = 0; j < size; ++j) { dst[j] = (src[j] - mean) * variable; } } } #endif void MNNRoiPoolingMax(float* dst, const float* src, int hLen, int wLen, int iw) { Vec4 max = Vec4(-FLT_MAX); for (int h = 0; h < hLen; h++, src += iw * UNIT) { for (int w = 0; w < wLen; w++) { Vec4 in = Vec4::load(src + w * UNIT); max = Vec4::max(max, in); } } Vec4::save(dst, max); } void MNNRoiAlignMax(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth) { for (int h = 0; h < pooledHeight; ++h, dst += pooledWidth * UNIT) { int preCalcIdx = h * pooledWidth * samplingRatioArea; for (int w = 0; w < pooledWidth; ++w) { Vec4 res = Vec4(-FLT_MAX); for (int i = 0; i < samplingRatioArea; ++i) { const std::vector<int>& pos = vecPos[preCalcIdx]; const std::vector<float>& area = vecArea[preCalcIdx]; Vec4 val0 = Vec4::load(src + pos[0] * UNIT); Vec4 val1 = Vec4::load(src + pos[1] * UNIT); Vec4 val2 = Vec4::load(src + pos[2] * UNIT); Vec4 val3 = Vec4::load(src + pos[3] * UNIT); Vec4 mla = val0 * area[0]; mla = Vec4::fma(mla, val1, area[1]); mla = Vec4::fma(mla, val2, area[2]); mla = Vec4::fma(mla, val3, area[3]); res = Vec4::max(res, mla); preCalcIdx++; } Vec4::save(dst + w * UNIT, res); } } } void MNNRoiAlignAvg(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth) { float invSamplingCnt = 1.f / samplingRatioArea; for (int h = 0; h < pooledHeight; ++h, dst += pooledWidth * UNIT) { int preCalcIdx = h * pooledWidth * samplingRatioArea; for (int w = 0; w < pooledWidth; ++w) { Vec4 res = Vec4(0.f); for (int i = 0; i < samplingRatioArea; ++i) { const std::vector<int>& pos = vecPos[preCalcIdx]; const std::vector<float>& area = vecArea[preCalcIdx]; Vec4 val0 = Vec4::load(src + pos[0] * UNIT); Vec4 val1 = Vec4::load(src + pos[1] * UNIT); Vec4 val2 = Vec4::load(src + pos[2] * UNIT); Vec4 val3 = Vec4::load(src + pos[3] * UNIT); Vec4 mla = val0 * area[0]; mla = Vec4::fma(mla, val1, area[1]); mla = Vec4::fma(mla, val2, area[2]); mla = Vec4::fma(mla, val3, area[3]); res += mla; preCalcIdx++; } res = res * invSamplingCnt; Vec4::save(dst + w * UNIT, res); } } } void MNNPackC4Uint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset) { MNNPackC4Common(dst, src, area, depth, areaOffset); } void MNNUnpackC4Uint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset) { MNNUnpackC4Common(dst, src, area, depth, areaOffset); } void MNNUnpackTransposeUint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset) { if (depth == 4) { ::memcpy(dst, src, area * depth * sizeof(uint8_t)); return; } #ifdef MNN_USE_NEON if (depth == 3) { uint8x16x4_t rgba; rgba.val[3] = vdupq_n_u8(0); int sta = 0; int staC16 = (int)area / 16; for (int i = 0; i < staC16; sta += 16, ++i) { auto rgb = vld3q_u8(src + sta * 3); rgba.val[0] = rgb.val[0]; rgba.val[1] = rgb.val[1]; rgba.val[2] = rgb.val[2]; vst4q_u8(dst + 4 * sta, rgba); } sta = staC16 * 16; for (; sta < area; ++sta) { auto s = src + sta * 3; auto d = dst + sta * 4; d[0] = s[0]; d[1] = s[1]; d[2] = s[2]; d[3] = 0; } return; } if (depth == 1) { uint8x16x4_t rgba; rgba.val[1] = vdupq_n_u8(0); rgba.val[2] = vdupq_n_u8(0); rgba.val[3] = vdupq_n_u8(0); int sta = 0; for (; sta < area; sta += 16) { rgba.val[0] = vld1q_u8(src + sta); vst4q_u8(dst + 4 * sta, rgba); } for (; sta < area; ++sta) { auto s = src + sta; auto d = dst + sta * 4; d[0] = s[0]; d[1] = 0; d[2] = 0; d[3] = 0; } return; } #endif int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; if (cAlign == c) { for (int hi = 0; hi < area; ++hi) { auto srcHeight = reinterpret_cast<const int32_t*>(src + hi * c); auto dstHeight = reinterpret_cast<int32_t*>(dst + hi * 4); for (int ci = 0; ci < cDiv4; ++ci) { dstHeight[ci * areaOffset[1]] = srcHeight[ci]; } } return; } else { for (int hi = 0; hi < area; ++hi) { auto srcHeight = src + hi * c; auto dstHeight = dst + hi * 4; for (int ci = 0; ci < cDiv4; ++ci) { dstHeight[ci * areaOffset[1] * 4 + 0] = srcHeight[ci * 4 + 0]; dstHeight[ci * areaOffset[1] * 4 + 1] = srcHeight[ci * 4 + 1]; dstHeight[ci * areaOffset[1] * 4 + 2] = srcHeight[ci * 4 + 2]; dstHeight[ci * areaOffset[1] * 4 + 3] = srcHeight[ci * 4 + 3]; } } } int cReamin = c - cAlign; auto srcAlign = src + cAlign; auto dstAlign = dst + areaOffset[1] * cAlign; for (int hi = 0; hi < area; ++hi) { auto srcHeight = srcAlign + hi * c; auto dstHeight = dstAlign + hi * 4; for (int i = 0; i < 4; ++i) { dstHeight[i] = 0; } for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNUnpackTranspose(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { int srcAreaOffset = areaOffset[0]; int dstAreaOffset = areaOffset[1]; #ifdef MNN_USE_NEON if (1 == depth) { auto zeroValue = vmovq_n_f32(0.0f); int areaC4 = (int)area / 4; int remain = areaC4 * 4; for (int i = 0; i < areaC4; ++i) { auto srcCur = src + 4 * i; auto dstCur = dst + 16 * i; auto srcValue = vld1q_f32(srcCur); float32x4x4_t dstValue; dstValue.val[0] = srcValue; dstValue.val[1] = zeroValue; dstValue.val[2] = zeroValue; dstValue.val[3] = zeroValue; vst4q_f32(dstCur, dstValue); } for (int i = remain; i < area; ++i) { dst[4 * i + 0] = src[i]; dst[4 * i + 1] = 0.0f; dst[4 * i + 2] = 0.0f; dst[4 * i + 3] = 0.0f; } return; } if (3 == depth) { auto zeroValue = vmovq_n_f32(0.0f); int areaC4 = (int)area / 4; int remain = areaC4 * 4; for (int i = 0; i < areaC4; ++i) { auto srcCur = src + 12 * i; auto dstCur = dst + 16 * i; auto srcValue = vld3q_f32(srcCur); float32x4x4_t dstValue; dstValue.val[0] = srcValue.val[0]; dstValue.val[1] = srcValue.val[1]; dstValue.val[2] = srcValue.val[2]; dstValue.val[3] = zeroValue; vst4q_f32(dstCur, dstValue); } for (int i = remain; i < area; ++i) { dst[4 * i + 0] = src[3 * i + 0]; dst[4 * i + 1] = src[3 * i + 1]; dst[4 * i + 2] = src[3 * i + 2]; dst[4 * i + 3] = 0.0f; } return; } #endif int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; for (int hi = 0; hi < area; ++hi) { const float* srcHeight = src + hi * c; float* dstHeight = dst + hi * 4; for (int ci = 0; ci < cDiv4; ++ci) { Vec4::save(dstHeight + 4 * ci * dstAreaOffset, Vec4::load(srcHeight + 4 * ci)); } } if (cAlign == c) { return; } int cReamin = c - cAlign; auto srcAlign = src + cAlign; auto dstAlign = dst + dstAreaOffset * cAlign; #ifdef MNN_USE_NEON auto zeroVector = vdupq_n_f32(0.0f); #endif for (int hi = 0; hi < area; ++hi) { const float* srcHeight = srcAlign + hi * c; float* dstHeight = dstAlign + hi * 4; #ifdef MNN_USE_NEON vst1q_f32(dstHeight, zeroVector); #else for (int i = 0; i < 4; ++i) { dstHeight[i] = 0; } #endif for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNPackTransposeUint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset) { int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; if (cAlign == c) { int32_t* dst32 = (int32_t*)dst; const int32_t* src32 = (int32_t*)src; for (int hi = 0; hi < area; ++hi) { auto srcHeight = src32 + hi; auto dstHeight = dst32 + hi * cDiv4; for (int ci = 0; ci < cDiv4; ++ci) { dstHeight[ci] = srcHeight[ci * areaOffset[0]]; } } return; } for (int hi = 0; hi < area; ++hi) { auto srcHeight = src + hi * 4; auto dstHeight = dst + hi * c; for (int ci = 0; ci < cDiv4; ++ci) { for (int i = 0; i < 4; ++i) { dstHeight[ci * 4 + i] = srcHeight[4 * ci * areaOffset[0] + i]; } } } int cReamin = c - cAlign; auto srcAlign = src + areaOffset[0] * cAlign; auto dstAlign = dst + cAlign; for (int hi = 0; hi < area; ++hi) { auto srcHeight = srcAlign + hi * 4; auto dstHeight = dstAlign + hi * c; for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNPackTranspose(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { #if defined(MNN_USE_NEON) if (3 == depth) { int areaC4 = (int)area / 4; int remain = areaC4 * 4; for (int i = 0; i < areaC4; ++i) { auto srcCur = src + 16 * i; auto dstCur = dst + 12 * i; auto srcValue = vld4q_f32(srcCur); float32x4x3_t dstValue; dstValue.val[0] = srcValue.val[0]; dstValue.val[1] = srcValue.val[1]; dstValue.val[2] = srcValue.val[2]; vst3q_f32(dstCur, dstValue); } for (int i = remain; i < area; ++i) { dst[3 * i + 0] = src[4 * i + 0]; dst[3 * i + 1] = src[4 * i + 1]; dst[3 * i + 2] = src[4 * i + 2]; } return; } #elif defined(MNN_USE_SSE) if (3 == depth) { if (area < 1) return; for (int i = 0; i < area - 1; ++i) { auto srcValue = Vec4::load(src + 4 * i); Vec4::save(dst + 3 * i, srcValue); } for (int i = 0; i < 3; ++i) { dst[3 * (area - 1) + i] = src[4 * (area - 1) + i]; } return; } #endif int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; auto srcArea = areaOffset[0]; for (int hi = 0; hi < area; ++hi) { const float* srcHeight = src + hi * 4; float* dstHeight = dst + hi * c; for (int ci = 0; ci < cDiv4; ++ci) { Vec4::save(dstHeight + 4 * ci, Vec4::load(srcHeight + 4 * ci * srcArea)); } } if (cAlign == c) { return; } int cReamin = c - cAlign; auto srcAlign = src + srcArea * cAlign; auto dstAlign = dst + cAlign; for (int hi = 0; hi < area; ++hi) { const float* srcHeight = srcAlign + hi * 4; float* dstHeight = dstAlign + hi * c; for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNExp(float* dst, const float* src, float* offset, size_t dataSize) { int countC8 = static_cast<int32_t>(dataSize) / 8; int remain = static_cast<int32_t>(dataSize) % 8; static const float parameters[] = { (float)logf(2.0f), 1.0f / (float)logf(2.0f), 0.25f, 1.0f, 0.5f, 1.0f / 6.0f, 1.0f / 24.0f, 1.0f / 120.0f}; if (countC8 > 0) { // Align to eight so asm is easier to write MNNExpC8(dst, src, offset, parameters, countC8); } if (remain > 0) { auto param = parameters[0]; float xLimit = 87; float summer = offset[3]; auto source = src + countC8 * 8; auto dest = dst + countC8 * 8; for (int i = 0; i < remain; ++i) { auto x = source[i] * offset[0] + offset[2]; x = ALIMAX(x, -xLimit); x = ALIMIN(x, xLimit); int div = (x * parameters[1]); int div2 = (div + 127) << 23; auto xReamin = x - div * param; float expBasic = *(float*)(&div2); auto t = xReamin * 0.25f; auto expRemain = ((((parameters[7] * t + parameters[6]) * t + parameters[5]) * t + parameters[4]) * t + 1.0f) * t + 1.0f; expRemain = expRemain * expRemain; expRemain = expRemain * expRemain; dest[i] = expBasic * expRemain + offset[1]; summer+= dest[i]; } offset[3] = summer; } } // Lambert's series with 7 divisions // reference from // https://varietyofsound.wordpress.com/2011/02/14/efficient-tanh-computation-using-lamberts-continued-fraction/ inline float tanhf_poly(float value) { if (value > 5.0) { return 1.0; } else if (value <= -5.0) { return -1.0; } else { float x2 = value * value; float a = value * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2))); float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f)); return a / b; } } void MNNTanh(float* dst, const float* src, size_t dataSize) { /* Origin Code for (int i = 0; i < dataSize; i++) { // outputData[i] = 1 - 2 / (expf(2 * inputData[i]) + 1); dst[i] = tanhf_poly(src[i]); } */ float offset[4] = { -2.0f, 0.0f, 0.0f, 0.0f }; MNNExp(dst, src, offset, dataSize); for (int i = 0; i < dataSize; i++) { // outputData[i] = 1 - 2 / (expf(2 * inputData[i]) + 1); auto expX2 = dst[i]; dst[i] = (1.0f - expX2) / (1.0f + expX2); } } void MNNReluWithSlope(float* dst, const float* src, size_t sizeQuad, float slope) { float slopeValue[4]; for (int i=0; i<4; ++i) { slopeValue[i] = slope; } MNNReluWithSlopeChannel(dst, src, slopeValue, sizeQuad, 1); } void MNNReluWithSlopeCommon(float* dst, const float* src, size_t size, float slope) { int sizeQuad = static_cast<int32_t>(size) / 4; int remain = static_cast<int32_t>(size) % 4; if (sizeQuad > 0) { MNNReluWithSlope(dst, src, sizeQuad, slope); } if (remain > 0) { float intmp[4] = {0}, outmp[4] = {0}; ::memcpy(intmp, src + sizeQuad * 4, remain * sizeof(float)); MNNReluWithSlope(outmp, intmp, 1, slope); ::memcpy(dst + sizeQuad * 4, outmp, remain * sizeof(float)); } } void MNNHardSwishCommon(float* dst, const float* src, size_t size) { int sizeQuad = static_cast<int32_t>(size / 4); int remain = static_cast<int32_t>(size) % 4; #ifdef MNN_USE_SSE if (sizeQuad > 0) { MNNHardSwish(dst, src, sizeQuad); } if (remain > 0) { float intmp[4] = {0}, outmp[4] = {0}; ::memcpy(intmp, src + sizeQuad * 4, remain * sizeof(float)); MNNHardSwish(outmp, intmp, 1); ::memcpy(dst + sizeQuad * 4, outmp, remain * sizeof(float)); } #else #ifdef MNN_USE_NEON float32x4_t zero = vdupq_n_f32(0.f); float32x4_t three = vdupq_n_f32(3.f); float32x4_t six = vdupq_n_f32(6.f); float32x4_t divsix = vdupq_n_f32(1.0f/6.f); for (int i = 0; i < sizeQuad; i++) { auto x = vld1q_f32(src + 4 * i); auto y = vmulq_f32(vmulq_f32(x, vminq_f32(vmaxq_f32(vaddq_f32(x, three), zero), six)), divsix); vst1q_f32(dst + 4 * i, y); } if (remain > 0) { float intmp[4] = {0}, outmp[4] = {0}; ::memcpy(intmp, src + sizeQuad * 4, remain * sizeof(float)); auto x = vld1q_f32(intmp); auto y = vmulq_f32(vmulq_f32(x, vminq_f32(vmaxq_f32(vaddq_f32(x, three), zero), six)), divsix); vst1q_f32(outmp, y); ::memcpy(dst + sizeQuad * 4, outmp, remain * sizeof(float)); } #else for (int j = 0; j < size; j++) { if (src[j] <= -3) { dst[j] = 0; } else if (src[j] >= 3){ dst[j] = src[j]; } else { dst[j] = src[j] * (src[j] + 3) / 6.f; } } #endif #endif } void MNNGeluStandardCommon(float* dst, const float* src, size_t size) { for (int i = 0; i < size; i++) { dst[i] = (erf(src[i] * 0.7071067932881648) + 1) * src[i] * 0.5; } } void MNNGeluCommon(float* dst, const float* src, size_t size) { int sizeQuad = static_cast<int32_t>(size / 8); int remain = static_cast<int32_t>(size) % 8; #if defined(MNN_USE_SSE) || defined(MNN_USE_NEON) float parameters[8] = {0.044715f, 0.79788458f, 378.f, 17325.f, 135135.f, 28.f, 3150.f, 62370.f}; if (sizeQuad > 0) { MNNGelu(dst, src, sizeQuad, parameters); } if (remain > 0) { float intmp[8] = {0}; float outmp[8] = {0}; ::memcpy(intmp, src + 8 * sizeQuad, remain * sizeof(float)); MNNGelu(outmp, intmp, 1, parameters); ::memcpy(dst + 8 * sizeQuad, outmp, remain * sizeof(float)); } #else auto tanhf_poly = [](float value) -> float { if (value > 5.0f) { return 1.0f; } else if (value <= -5.0f) { return -1.0f; } else { float x2 = value * value; float a = value * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2))); float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f)); return a / b; } }; for (int i = 0; i < size; i++) { float temp = 0.044715f * src[i] * src[i] * src[i]; temp = 0.79788458f * (temp + src[i]); dst[i] = (1.0f + tanhf_poly(temp)) * src[i] * 0.5f; } #endif } void MNNScaleAndAddBiasScalar(float* dst, const float* src, float bias, float alpha, size_t number) { int numberC4 = (int)number / 4; int start = 0; if (numberC4 > 0) { float biasC4[4] = { bias, bias, bias, bias }; float alphaC4[4] = { alpha, alpha, alpha, alpha }; MNNScaleAndAddBias(dst, src, biasC4, alphaC4, numberC4, 1); start = numberC4 * 4; } for (int i=start; i<number; ++i) { dst[i] = src[i] * alpha + bias; } } #ifndef MNN_USE_NEON void MNNAxByClampBroadcastUnit(float* C, const float* A, const float* B, size_t width, size_t cStride, size_t aStride, size_t height, const float* parameters) { auto minF = Vec4(parameters[2]); auto maxF = Vec4(parameters[3]); auto beta = Vec4(parameters[1]); for (int y = 0; y < height; ++y) { auto a = A + aStride * y; auto b = B + 4 * y; auto bv = Vec4::load(b); auto c = C + cStride * y; for (int x = 0; x < width; ++x) { auto av = Vec4::load(a + 4 * x); auto cv = av + bv * beta; cv = Vec4::min(cv, maxF); cv = Vec4::max(cv, minF); Vec4::save(c + 4 * x, cv); } } } void MNNVectorTop1Float(float* input, float* maxValue, int32_t* maxIndex, size_t inputCountUnit) { float maxV = input[0]; int maxIdx = 0; for (int i = 0; i < inputCountUnit; i++) { int offset = i * UNIT; for (int j = 0; j < UNIT; j++) { if (input[offset + j] > maxV) { maxV = input[offset + j]; maxIdx = offset + j; } } } maxValue[0] = maxV; maxIndex[0] = maxIdx; } void MNNVectorTop1Int32(int32_t* input, int32_t* maxValue, int32_t* maxIndex, size_t inputCountUnit) { int32_t maxV = input[0]; int maxIdx = 0; for (int i = 0; i < inputCountUnit; i++) { int offset = i * UNIT; for (int j = 0; j < UNIT; j++) { if (input[offset + j] > maxV) { maxV = input[offset + j]; maxIdx = offset + j; } } } maxValue[0] = maxV; maxIndex[0] = maxIdx; } #endif void MNNComputeMatMulForE_1(const float* A, const float* B, float* C, const float* biasPtr, const MatMulParam* param, size_t tId) { auto l = param->l; auto h = param->h; auto numberThread = param->numberThread; auto lC4 = l / 4; auto lR = lC4 * 4; if (param->BTranspose) { for (int y=tId; y<h; y+=numberThread) { Vec4 sumValue = Vec4(0.0f); auto by = B + y * l; for (int x=0; x<lC4; ++x) { sumValue = Vec4::fma(sumValue, Vec4::load(A + x * 4), Vec4::load(by + x * 4)); } float sumRemain = 0.0f; for (int x=lR; x<l; ++x) { sumRemain = sumRemain + A[x] * by[x]; } if (nullptr != biasPtr) { sumRemain += biasPtr[y]; } C[y] = sumRemain + sumValue[0] + sumValue[1] + sumValue[2] + sumValue[3]; } } else { auto hC4 = h / 16; auto hR = hC4 * 16; for (int y=tId; y<hC4; y+=numberThread) { auto bs = B + 16 * y; Vec4 sumValue0 = Vec4(0.0f); Vec4 sumValue1 = Vec4(0.0f); Vec4 sumValue2 = Vec4(0.0f); Vec4 sumValue3 = Vec4(0.0f); if (biasPtr != nullptr) { sumValue0 = Vec4::load(biasPtr + 16 * y + 0); sumValue1 = Vec4::load(biasPtr + 16 * y + 4); sumValue2 = Vec4::load(biasPtr + 16 * y + 8); sumValue3 = Vec4::load(biasPtr + 16 * y + 12); } auto srcY = A + y * l; for (int x=0; x<l; ++x) { auto a = Vec4(A[x]); sumValue0 = Vec4::fma(sumValue0, a, Vec4::load(bs + h * x)); sumValue1 = Vec4::fma(sumValue1, a, Vec4::load(bs + h * x + 4)); sumValue2 = Vec4::fma(sumValue2, a, Vec4::load(bs + h * x + 8)); sumValue3 = Vec4::fma(sumValue3, a, Vec4::load(bs + h * x + 12)); } Vec4::save(C + 16 * y, sumValue0); Vec4::save(C + 16 * y + 4, sumValue1); Vec4::save(C + 16 * y + 8, sumValue2); Vec4::save(C + 16 * y + 12, sumValue3); } for (int y=hR + tId; y<h; y+=numberThread) { auto bs = B + y; float sumValue = 0.0f; if (biasPtr != nullptr) { sumValue = biasPtr[y]; } auto srcY = A + y * l; for (int x=0; x<l; ++x) { sumValue = sumValue + A[x] * bs[h * x]; } C[y] = sumValue; } } } void MNNComputeMatMulForH_1(const float* A, const float* B, float* C, const float* biasPtr, const MatMulParam* param, size_t tId) { int e = param->e; int l = param->l; int numberThread = param->numberThread; if (param->ATranspose) { float biasValue = 0.0f; if (nullptr != biasPtr) { biasValue = *biasPtr; } auto eC4 = e / 4; auto eR = eC4 * 4; for (int y=tId; y<eC4; y+=numberThread) { Vec4 sumValue = Vec4(biasValue); auto srcY = A + y * 4; for (int x=0; x<l; ++x) { sumValue = sumValue + Vec4::load(srcY + x * e) * Vec4(B[x]); } Vec4::save(C + 4 * y, sumValue); } if (0 == tId) { for (int y=eR; y<e; ++y) { float sumValue = biasValue; auto srcY = A + y; for (int x=0; x<l; ++x) { sumValue = sumValue + srcY[x * e] * B[x]; } C[y] = sumValue; } } return; } float biasValue = 0.0f; if (nullptr != biasPtr) { biasValue = *biasPtr; } auto lC4 = l / 4; auto lR = lC4 * 4; for (int y=tId; y<e; y+=numberThread) { Vec4 sumValue = Vec4(biasValue); auto srcY = A + y * l; for (int x=0; x<lC4; ++x) { sumValue = sumValue + Vec4::load(srcY + 4 * x) * Vec4::load(B + 4 * x); } float sumSingle = sumValue[0] + sumValue[1] + sumValue[2] + sumValue[3]; for (int x=lR; x<l; ++x) { sumSingle += srcY[x] * B[x]; } C[y] = sumSingle; } } void MNNPackC4Int16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset) { MNNPackC4Common(dst, src, area, depth, areaOffset); } void MNNUnpackC4Int16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset) { MNNUnpackC4Common(dst, src, area, depth, areaOffset); } void MNNUnpackTransposeInt16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset) { if (depth == 4) { ::memcpy(dst, src, area * depth * sizeof(int16_t)); return; } int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; for (int hi = 0; hi < area; ++hi) { auto srcHeight = (src + hi * c); auto dstHeight = (dst + hi * 4); for (int ci = 0; ci < cDiv4; ++ci) { for (int i = 0; i < 4; ++i) { dstHeight[ci * areaOffset[1] * 4 + i] = srcHeight[4 * ci + i]; } } } if (cAlign == c) { return; } int cReamin = c - cAlign; auto srcAlign = src + cAlign; auto dstAlign = dst + areaOffset[1] * cAlign; for (int hi = 0; hi < area; ++hi) { auto srcHeight = srcAlign + hi * c; auto dstHeight = dstAlign + hi * 4; for (int i = 0; i < 4; ++i) { dstHeight[i] = 0; } for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNPackTransposeInt16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset) { int c = (int)depth; int cDiv4 = c / 4; int cAlign = cDiv4 * 4; if (cAlign == c) { int64_t* dst32 = (int64_t*)dst; const int64_t* src32 = (int64_t*)src; for (int hi = 0; hi < area; ++hi) { auto srcHeight = src32 + hi; auto dstHeight = dst32 + hi * cDiv4; for (int ci = 0; ci < cDiv4; ++ci) { dstHeight[ci] = srcHeight[ci * areaOffset[0]]; } } return; } for (int hi = 0; hi < area; ++hi) { auto srcHeight = src + hi * 4; auto dstHeight = dst + hi * c; for (int ci = 0; ci < cDiv4; ++ci) { for (int i = 0; i < 4; ++i) { dstHeight[ci * 4 + i] = srcHeight[4 * ci * areaOffset[0] + i]; } } } int cReamin = c - cAlign; auto srcAlign = src + areaOffset[0] * cAlign; auto dstAlign = dst + cAlign; for (int hi = 0; hi < area; ++hi) { auto srcHeight = srcAlign + hi * 4; auto dstHeight = dstAlign + hi * c; for (int ci = 0; ci < cReamin; ++ci) { dstHeight[ci] = srcHeight[ci]; } } } void MNNCopyC4Int16WithStride(const float* sourceF, float* destF, size_t srcStride, size_t dstStride, size_t count) { auto source = (int16_t*)sourceF; auto dest = (int16_t*)destF; for (int i = 0; i < count; ++i) { auto s = source + i * srcStride; auto d = dest + i * dstStride; *(int64_t*)(d) = *((int64_t*)s); } } void MNNSin(float* dst, const float* src, size_t dataSize) { for (int i = 0; i < dataSize; i++) { dst[i] = sinf(src[i]); } } void MNNSigmoid(float* dst, const float* src, size_t dataSize) { float offset[4] = { -1.0f, 0.0f, 0.0f, 0.0f }; MNNExp(dst, src, offset, dataSize); for (int i = 0; i < dataSize; ++i) { dst[i] = 1.0f / (1.0f + dst[i]); } } void MNNSiLu(float* dst, const float* src, size_t dataSize) { float offset[4] = { -1.0f, 0.0f, 0.0f, 0.0f }; MNNExp(dst, src, offset, dataSize); for (int i = 0; i < dataSize; ++i) { dst[i] = src[i] / (1.0f + dst[i]); } } /** Modified from https://github.com/alibaba/MNN/pull/1359 Thanks for https://github.com/hroken */ void MNNSigmoidLowp(float* dst, const float* src, size_t dataSize) { float offset[4] = { -1.0f, 0.0f, 0.0f, 0.0f }; MNNExp(dst, src, offset, dataSize); #ifdef MNN_USE_NEON int dataC4 = static_cast<int32_t>(dataSize) / 4; int remain = static_cast<int32_t>(dataSize) % 4; float32x4_t value = vdupq_n_f32(1.0f); if(dataC4 > 0) { float32x4_t out = vld1q_f32(dst); // neon optimization for sigmid cpu for (int i = 1; i < dataC4; ++i) { out = vrecpeq_f32(vaddq_f32(value,out)); vst1q_f32(dst ,out); dst += 4; out = vld1q_f32(dst); } out = vrecpeq_f32(vaddq_f32(value,out)); vst1q_f32(dst, out); dst += 4; } if (remain > 0) { float intmp[4] = {0}; ::memcpy(intmp, dst, remain * sizeof(float)); float32x4_t out = vld1q_f32(intmp); out = vrecpeq_f32(vaddq_f32(value,out)); vst1q_f32(intmp, out); ::memcpy(dst, intmp, remain * sizeof(float)); } #else for (int i = 0; i < dataSize; ++i) { dst[i] = 1.0f / (1.0f + dst[i]); } #endif } void MNNSiLuLowp(float* dst, const float* src, size_t dataSize) { float offset[4] = { -1.0f, 0.0f, 0.0f, 0.0f }; MNNExp(dst, src, offset, dataSize); #ifdef __aarch64__ int dataC4 = static_cast<int32_t>(dataSize) / 4; int remain = static_cast<int32_t>(dataSize) % 4; float32x4_t one = vdupq_n_f32(1.0f); if(dataC4 > 0) { float32x4_t out = vld1q_f32(dst); float32x4_t in = vld1q_f32(src); // neon optimization for sigmid cpu for (int i = 1; i < dataC4; ++i) { out = vdivq_f32(in, vaddq_f32(one,out)); vst1q_f32(dst ,out); dst += 4; src += 4; out = vld1q_f32(dst); in = vld1q_f32(src); } out = vdivq_f32(in, vaddq_f32(one,out)); vst1q_f32(dst, out); dst += 4; src += 4; } if (remain > 0) { float intmp[4] = {0}; float atmp[4] = {0}; ::memcpy(intmp, dst, remain * sizeof(float)); ::memcpy(atmp, src, remain * sizeof(float)); float32x4_t out = vld1q_f32(intmp); float32x4_t in = vld1q_f32(atmp); out = vdivq_f32(in, vaddq_f32(one, out)); vst1q_f32(intmp, out); ::memcpy(dst, intmp, remain * sizeof(float)); } #else for (int i = 0; i < dataSize; ++i) { dst[i] = src[i] / (1.0f + dst[i]); } #endif } static void _MNNAdjustOptimalSparseKernel(int& sparseBlockOC, MNN::CoreFunctions::MNNPackedSparseMatMul& packedSparseMatMul) { if(sparseBlockOC == 4) { packedSparseMatMul = MNNPackedSparseMatMulEpx4; return; } else if(sparseBlockOC % 4 == 0) { sparseBlockOC = 4; packedSparseMatMul = MNNPackedSparseMatMulEpx4; // MNN_PRINT("common downgrade sparse to:%d\n",sparseBlockOC); return; } else { sparseBlockOC = 1; packedSparseMatMul = MNNPackedSparseMatMulEpx1; return; } } // fp32 <--> fp8 static const int FP32_EXP_BIAS = 127; static const int FP8_EXP_BIAS = 24; // [0, 31] --> [-24, 7] --> [1 / 2^24, 2^7] void MNNFp32ToFp8(uint8_t* dst, const float* src, size_t size) { for (int i = 0; i < size; i++) { uint32_t rawData = *((uint32_t *)(&src[i])); uint32_t sign = (rawData >> 31) & 1U; uint32_t exp = (int)((rawData >> 23) & 0x0ffU); uint32_t mant = (rawData >> 21) & 3U; int realExp = (int)exp - FP32_EXP_BIAS; realExp = ALIMAX(realExp, 0 - FP8_EXP_BIAS); realExp = ALIMIN(realExp, 31 - FP8_EXP_BIAS); exp = (uint32_t)(realExp + FP8_EXP_BIAS); dst[i] = (int8_t)((sign << 7) | (exp << 2) | mant); } } void MNNFp8ToFp32(float* dst, const uint8_t* src, size_t size) { for (int i = 0; i < size; i++) { uint32_t sign = (src[i] >> 7) & 1U; uint32_t exp = (int)((src[i] >> 2) & 0x1fU); uint32_t mant = (src[i] & 3U) << 21; int realExp = (int)exp - FP8_EXP_BIAS; exp = (uint32_t)(realExp + FP32_EXP_BIAS); uint32_t rawData = (sign << 31) | (exp << 23) | mant; dst[i] = *((float *)(&rawData)); } } // fp16 <--> fp8 void MNNFp16ToFp8(uint8_t* dst, const uint16_t* src, size_t size) { #ifdef MNN_USE_NEON #ifdef __aarch64__ int loopN = size / 16; for (int i = 0; i < loopN; i++) { uint8x16_t v1 = vld1q_u8((uint8_t*)(src + i * 16)); uint8x16_t v2 = vld1q_u8((uint8_t*)(src + i * 16 + 8)); uint8x16_t res = vuzp2q_u8(v1, v2); vst1q_u8(dst + i * 16, res); } for (int i = loopN * 16; i < size; i++) { dst[i] = static_cast<int8_t>(src[i] >> 8); } #else int loopN = size / 8; for (int i = 0; i < loopN; i++) { uint16x8_t vec = vld1q_u16(src + i * 8); uint8x8_t res = vshrn_n_u16(vec, 8); vst1_u8(dst + i * 8, res); } for (int i = loopN * 8; i < size; i++) { dst[i] = static_cast<int8_t>(src[i] >> 8); } #endif // ARM64 #else for (int i = 0; i < size; i++) { dst[i] = static_cast<int8_t>(src[i] >> 8); } #endif // USE_NEON } void MNNFp8ToFp16(uint16_t* dst, const uint8_t* src, size_t size) { #ifdef MNN_USE_NEON int loopN = size / 8; for (int i = 0; i < loopN; i++) { uint8x8_t vec8x8 = vld1_u8(src + i * 8); uint16x8_t vec16x8 = vshll_n_u8(vec8x8, 8); vst1q_u16(dst + i * 8, vec16x8); } for (int i = loopN * 8; i < size; i++) { dst[i] = static_cast<int16_t>(src[i]) << 8; } #else for (int i = 0; i < size; i++) { dst[i] = static_cast<int16_t>(src[i]) << 8; } #endif // USE_NEON } #ifdef MNN_LOW_MEMORY static void generalIm2col(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el, int LP, int pack) { // LP >= pack int number = info[0]; int eReal = info[1]; int eDest = info[2]; int offset = info[3]; for (int n=0; n<number; ++n) { int e = el[4 * n + 0]; int l = el[4 * n + 1]; int eOffset = el[4 * n + 2]; int lOffset = el[4 * n + 3]; int lC = lOffset / LP; int lR = lOffset % LP; auto dest = destOrigin + eOffset * LP + lC * eDest * LP + lR; auto source = sourceGroup[n]; for (int y=0; y<e; ++y) { auto yR = y % eDest; for (int x=0; x<l; ++x) { auto xR = x % pack; auto xC = x / pack; auto xOut = x / LP; auto xIn = x % LP; dest[xOut * eDest * LP + yR * LP + xIn] = source[xC * eReal * pack + y * pack * offset + xR]; } } } } #endif // MNN_LOW_MEMORY namespace MNN { static CoreFunctions* gCoreFunction = nullptr; void MNNCoreFunctionInit() { gCoreFunction = new CoreFunctions; // fp8 gCoreFunction->MNNFp32ToFp8 = MNNFp32ToFp8; gCoreFunction->MNNFp16ToFp8 = MNNFp16ToFp8; gCoreFunction->MNNFp8ToFp32 = MNNFp8ToFp32; gCoreFunction->MNNFp8ToFp16 = MNNFp8ToFp16; // MatMul gCoreFunction->MNNGetMatMulPackMode = MNNGetMatMulPackMode; gCoreFunction->MNNPackC4ForMatMul_A = MNNPackC4ForMatMul_A; gCoreFunction->MNNPackForMatMul_B = MNNPackForMatMul_B; gCoreFunction->MNNPackedMatMul = MNNPackedMatMul; gCoreFunction->MNNPackedMatMulRemain = MNNPackedMatMulRemain; gCoreFunction->MNNCountMaxMinValue = MNNCountMaxMinValue; gCoreFunction->MNNGetSparseMatMulPackMode = MNNGetSparseMatMulPackMode; gCoreFunction->MNNAdjustOptimalSparseKernel = _MNNAdjustOptimalSparseKernel; gCoreFunction->MNNComputeMatMulForE_1 = MNNComputeMatMulForE_1; gCoreFunction->MNNComputeMatMulForH_1 = MNNComputeMatMulForH_1; // Lowp gCoreFunction->MNNFp32ToLowp = nullptr; gCoreFunction->MNNLowpToFp32 = nullptr; gCoreFunction->bytes = 4;// sizeof(float) // Packed Function gCoreFunction->pack = 4; // FIXME: MNNPackTranspose and MNNUnpackTranspose is reverted gCoreFunction->MNNPackCUnit = MNNPackC4; gCoreFunction->MNNUnpackCUnit = MNNUnpackC4; gCoreFunction->MNNUnpackCUnitTranspose = MNNPackTranspose; gCoreFunction->MNNPackCUnitTranspose = MNNUnpackTranspose; gCoreFunction->MNNPackCUnitInt8 = decltype(gCoreFunction->MNNPackCUnitInt8)(MNNPackC4Uint8); gCoreFunction->MNNUnpackCUnitInt8 = decltype(gCoreFunction->MNNUnpackCUnitInt8)(MNNUnpackC4Uint8); gCoreFunction->MNNPackCUnitTransposeInt8 = decltype(gCoreFunction->MNNPackCUnitTransposeInt8)(MNNUnpackTransposeUint8); gCoreFunction->MNNUnpackCUnitTransposeInt8 = decltype(gCoreFunction->MNNUnpackCUnitTransposeInt8)(MNNPackTransposeUint8); gCoreFunction->MNNPackCUnitInt16 = MNNPackC4Int16; gCoreFunction->MNNUnpackCUnitInt16 = MNNUnpackC4Int16; gCoreFunction->MNNPackCUnitTransposeInt16 = MNNUnpackTransposeInt16; gCoreFunction->MNNUnpackCUnitTransposeInt16 = MNNPackTransposeInt16; gCoreFunction->MNNAxByClampBroadcastUnit = MNNAxByClampBroadcastUnit; gCoreFunction->MNNConvRunForLineDepthwise = MNNConvRunForLineDepthwise; gCoreFunction->MNNMatrixAdd = MNNMatrixAdd; gCoreFunction->MNNMatrixSub = MNNMatrixSub; gCoreFunction->MNNStrassenMergeCFunction = MNNStrassenMergeCFunction; gCoreFunction->penalty = 1.5f; gCoreFunction->MNNScaleAndAddBias = MNNScaleAndAddBias; gCoreFunction->MNNGridSampleComputeCord = MNNGridSampleComputeCord; gCoreFunction->MNNGridSampleInterp = MNNGridSampleInterp; gCoreFunction->MNNGridSampleInterpGrad = MNNGridSampleInterpGrad; gCoreFunction->MNNGridSampleComputeCord3D = MNNGridSampleComputeCord3D; gCoreFunction->MNNGridSampleInterp3D = MNNGridSampleInterp3D; gCoreFunction->MNNRoiPoolingMax = MNNRoiPoolingMax; gCoreFunction->MNNRoiAlignMax = MNNRoiAlignMax; gCoreFunction->MNNRoiAlignAvg = MNNRoiAlignAvg; gCoreFunction->MNNAddC4WithStride = MNNAddC4WithStride; gCoreFunction->MNNCopyC4WithStride = MNNCopyC4WithStride; gCoreFunction->chooseWinoSourceTransformPack = WinogradFunction::chooseWinoSourceTransformPack; gCoreFunction->chooseWinoSourceUnrollTransform = WinogradFunction::chooseSourceUnrollTransform; gCoreFunction->chooseWinoDestUnrollTransform = WinogradFunction::chooseWinoDestUnrollTransform; gCoreFunction->MNNDeconvRunForLineDepthwise = MNNDeconvRunForLineDepthwise; gCoreFunction->MNNDeconvRunForUnitDepthWise = MNNDeconvRunForUnitDepthWise; #ifdef MNN_USE_NEON gCoreFunction->MNNDepthwiseConvFastKernel = MNNDepthwiseConvFastKernel; #endif gCoreFunction->MNNSelectBinaryFunctionForFloat = CPUBinary::selectForFloat; gCoreFunction->MNNSelectUnaryFunctionForFloat = CPUUnary::selectForFloat; gCoreFunction->MNNSelectUnaryFunctionForInt8 = CPUUnary::selectForInt8; gCoreFunction->MNNReluWithSlopeChannel = MNNReluWithSlopeChannel; gCoreFunction->MNNPoolingAvg = (decltype(gCoreFunction->MNNPoolingAvg))(poolingAvg<float, Vec4, 4>); // Set min value as 1 << 24 gCoreFunction->MNNPoolingMax = (decltype(gCoreFunction->MNNPoolingMax))(poolingMax<float, Vec4, 4, -16777216>); gCoreFunction->MNNPoolingMaxWithRedice = (decltype(gCoreFunction->MNNPoolingMaxWithRedice))(poolingMaxWithRedice<float, -16777216>); // ImageProcess Functions gCoreFunction->MNNRGBAToBGRA = MNNRGBAToBGRA; gCoreFunction->MNNNV21ToRGBA = MNNNV21ToRGBA; gCoreFunction->MNNNV21ToRGB = MNNNV21ToRGB; gCoreFunction->MNNNV21ToBGRA = MNNNV21ToBGRA; gCoreFunction->MNNNV21ToBGR = MNNNV21ToBGR; gCoreFunction->MNNC1ToFloatC1 = MNNC1ToFloatC1; gCoreFunction->MNNC3ToFloatC3 = MNNC3ToFloatC3; gCoreFunction->MNNC3ToFloatRGBA = MNNC3ToFloatRGBA; gCoreFunction->MNNSamplerC4Nearest = MNNSamplerC4Nearest; gCoreFunction->MNNSamplerC4Bilinear = MNNSamplerC4Bilinear; gCoreFunction->MNN4BitcopyWithStride = MNN4BitcopyWithStride; gCoreFunction->MNN1BitcopyWithStride = MNN1BitcopyWithStride; gCoreFunction->MNN2BitcopyWithStride = MNN2BitcopyWithStride; gCoreFunction->MNN4BitcopyFast = MNN4BitcopyFast; gCoreFunction->MNN2BitcopyFast = MNN2BitcopyFast; gCoreFunction->MNN1BitcopyFast = MNN1BitCopyFast; gCoreFunction->MNNAccumulateSequenceNumber = MNNAccumulateSequenceNumber; const MNNCPUInfo& gCPUInfo = *MNNGetCPUInfo(); gCoreFunction->supportFp16arith = gCPUInfo.fp16arith; gCoreFunction->supportSDot = gCPUInfo.dot; gCoreFunction->supportI8mm = gCPUInfo.i8mm; gCoreFunction->MNNSumByAxisLForMatmul_A = MNNSumByAxisLForMatmul_A; gCoreFunction->MNNReorderWeightInt4 = MNNReorderWeightInt4; gCoreFunction->MNNSumWeightInt8 = MNNSumWeightInt8; #ifdef __aarch64__ if (gCoreFunction->supportSDot) { gCoreFunction->MNNReorderWeightInt4 = MNNReorderWeightInt4Arm82; gCoreFunction->MNNSumWeightInt8 = MNNSumWeightInt8Arm82; } if (gCoreFunction->supportI8mm) { gCoreFunction->MNNReorderWeightInt4 = MNNReorderWeightInt4Arm86; gCoreFunction->MNNSumWeightInt8 = MNNSumWeightInt8Arm86; } #endif #ifdef MNN_CPU_WEIGHT_DEQUANT_GEMM // Weight Dequant Gemm Kernels gCoreFunction->MNNPackedMatMul_int8 = MNNPackedMatMul_int8; gCoreFunction->MNNPackedMatMulRemain_int8 = MNNPackedMatMulRemain_int8; #endif #ifdef MNN_LOW_MEMORY gCoreFunction->MNNAbsMax = MNNAbsMaxFP32; // abs max value for [icDiv4,plane,4] -> abs max:[plane] gCoreFunction->MNNDynamicQuant = MNNDynamicQuantFP32; // symmetric 'batch' quant for [icDiv4,plane,4] gCoreFunction->MNNAsyQuantFunc = MNNAsyQuantFunc; // asymmetric 'batch' quant for [icDiv4,plane,4] gCoreFunction->MNNAsyQuantInfo = MNNAsyQuantInfo_FP32; // asymmetric quant/dequant scale&bias for [icDiv4,plane,4] -> scale&bias:[blockNum,plane] gCoreFunction->MNNQuantScale = MNNQuantScaleFP32; // symmetric quant/dequant scale&bias for [icDiv4,plane,4] -> scale&bias:[plane] gCoreFunction->MNNGeneralIm2Col = generalIm2col; // Im2Col based on float data -> output:[eU,kernelsize,lU,ep,lp] gCoreFunction->MNNDynamicUpdateConvBiasScale = MNNDynamicUpdateConvBiasScale; #ifdef __aarch64__ if (gCoreFunction->supportSDot) { gCoreFunction->MNNGeneralIm2Col = MNNGeneralIm2col_Fp32Arm82; } if (gCoreFunction->supportI8mm) { gCoreFunction->MNNGeneralIm2Col = MNNGeneralIm2col_Fp32Arm86; } #endif #endif MNNCoreInt8FunctionInit(); MNNFunctionInit(); } CoreFunctions* MNNGetCoreFunctions() { return gCoreFunction; } }; void MNNUnpackC4Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNUnpackC4(dst, src, area, depth, offset); } void MNNPackC4Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNPackC4(dst, src, area, depth, offset); } void MNNPackC2(double* dst, const double* src, size_t area, size_t depth, int* areaOffset) { MNNPackC2Common<double>(dst, src, area, depth, areaOffset); } void MNNUnpackC2(double* dst, const double* src, size_t area, size_t depth, int* areaOffset) { MNNUnpackC2Common<double>(dst, src, area, depth, areaOffset); } void MNNUnpackC2Float(float* dst, const float* src, size_t area, size_t depth, int* areaOffset, int pack) { MNNUnpackC2Common<float>(dst, src, area, depth, areaOffset, pack); } #ifndef __aarch64__ void MNNPackInt8C2(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { MNNPackC2Common<float>(dst, src, area, depth, areaOffset); } #endif void MNNUnpackInt8C2(float* dst, const float* src, size_t area, size_t depth, int* areaOffset) { MNNUnpackC2Common<float>(dst, src, area, depth, areaOffset); } void MNNUnpackC2Origin(double* dst, const double* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNUnpackC2(dst, src, area, depth, offset); } void MNNPackC2Origin(double* dst, const double* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNPackC2(dst, src, area, depth, offset); } void MNNUnpackInt8C2Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNUnpackInt8C2(dst, src, area, depth, offset); } void MNNPackInt8C2Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset) { int offset[] = { areaOffset, areaOffset, }; MNNPackInt8C2(dst, src, area, depth, offset); }