source/backend/cpu/compute/CommonOptFunction.h (277 lines of code) (raw):

// // CommonOptFunction.h // MNN // // Created by MNN on 2018/07/16. // Copyright © 2018, Alibaba Group Holding Limited // #ifndef CommonOptFunction_h #define CommonOptFunction_h #include <stdint.h> #include <stdio.h> #include <string.h> #include <vector> #include <MNN/Rect.h> #include "core/Macro.h" #include "backend/cpu/compute/Int8FunctionsOpt.h" extern "C" { #ifdef MNN_LOW_MEMORY #ifdef __aarch64__ void MNNGeneralIm2col_Fp32Arm82(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el, int32_t LP, int32_t pack); void MNNGeneralIm2col_Fp32Arm86(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el, int32_t LP, int32_t pack); void MNNLocalMinMaxFP32_Pack4(float* dstMin, float* dstMax, const float* source, size_t blockNum, size_t blockLU, size_t EP, size_t LP, size_t loadDstBuffer); void MNNLocalMinMaxFP32_Pack8(float* dstMin, float* dstMax, const float* source, size_t blockNum, size_t blockLU, size_t EP, size_t LP, size_t loadDstBuffer); void MNNDynamicQuantFP32_Pack4(const float* src, int8_t* dst, const float* scale, size_t src_depth_quad, size_t realSize, const float* bias, size_t pack); void MNNDynamicQuantFP32_Pack8(const float* src, int8_t* dst, const float* scale, size_t src_depth_quad, size_t realSize, const float* bias, size_t pack); void MNNAbsMaxFP32_Pack4(const float* source, float* absmax, size_t src_depth_quad, size_t realSize, int pack); void MNNAbsMaxFP32_Pack8(const float* source, float* absmax, size_t src_depth_quad, size_t realSize, int pack); void MNNQuantScaleFP32(float* absmax, float* quant_scale, float* dequant_scale, size_t thread, size_t batch); void MNNDynamicUpdateConvBiasScale(float* newbias, float* oldbias, float* weightKernelSum, float* inputZero, size_t ocQuad); #endif #endif void MNNFp32ToFp8(uint8_t* dst, const float* src, size_t size); void MNNFp8ToFp32(float* dst, const uint8_t* src, size_t size); void MNNFp16ToFp8(uint8_t* dst, const uint16_t* src, size_t size); void MNNFp8ToFp16(uint16_t* dst, const uint8_t* src, size_t size); void MNNReluWithSlope(float* dst, const float* src, size_t sizeQuad, float slope); void MNNReluInt8(int8_t* dst, const int8_t* src, size_t size, ssize_t zeroPoint); void MNNReluWithSlopeChannel(float* dst, const float* src, const float* slope, size_t sizeQuad, size_t depthQuad); void MNNHardSwish(float* dst, const float* src, size_t size); void MNNGelu(float* dst, const float* src, size_t size, float* parameters); void MNNPackC4(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNPackC4Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset); void MNNPackC2(double* dst, const double* src, size_t area, size_t depth, int* areaOffset); void MNNPackC2Origin(double* dst, const double* src, size_t area, size_t depth, int areaOffset); void MNNPackInt8C2(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNPackInt8C2Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset); void MNNPackC4Int16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset); void MNNPackC4Uint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset); void MNNUnpackC4(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNUnpackC4Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset); void MNNUnpackC2(double* dst, const double* src, size_t area, size_t depth, int* areaOffset); void MNNUnpackC2Origin(double* dst, const double* src, size_t area, size_t depth, int areaOffset); void MNNUnpackC2Float(float* dst, const float* src, size_t area, size_t depth, int* areaOffset, int pack = 1); void MNNUnpackInt8C2(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNUnpackInt8C2Origin(float* dst, const float* src, size_t area, size_t depth, int areaOffset); void MNNUnpackC4Int16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset); void MNNUnpackC4Uint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset); void MNNScaleAndAddBias(float* dst, const float* src, const float* bias, const float* alpha, size_t planeNumber, size_t biasNumber); void MNNScaleAndAddBiasScalar(float* dst, const float* src, float bias, float alpha, size_t number); // TODO: Swap the name for MNNUnpackTranspose and MNNPackTranspose void MNNUnpackTranspose(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNUnpackTransposeInt16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset); void MNNUnpackTransposeUint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset); void MNNPackTranspose(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void MNNPackTransposeInt16(int16_t* dst, const int16_t* src, size_t area,size_t depth, int* areaOffset); void MNNPackTransposeUint8(uint8_t* dst, const uint8_t* src, size_t area,size_t depth, int* areaOffset); void MNNCopyC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count); void MNNAddC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count); void MNNUInt8ToInt16WithOffsetC4Common(int16_t* dst, const uint8_t* src, size_t zeroPoint, size_t sizeQuad, size_t dstStride, size_t srcStride); void MNNUInt8ToInt16WithOffsetC4Fast(int16_t* dst, const uint8_t* src, size_t zeroPoint, size_t sizeQuad, size_t depthQuad, size_t dstZStep, size_t srcZStep); void MNNMaxFloat(float* input, float* maxBuffer, int32_t inputCountUnit); void MNNMinFloat(float* input, float* maxBuffer, int32_t inputCountUnit); void MNNPowC8(float* dest, const float* source, const float* powfParam, size_t betaInt, size_t countC8); void MNNExpC8(float* dest, const float* source, float* offset, const float* parameters, size_t countC8); // Offset: o0, o1, o2, o3: dst = exp(src*o0+o2)+o1, o3 = o3+sum(dst) void MNNExp(float* dst, const float* src, float* offset, size_t dataSize); void MNNSin(float* dst, const float* src, size_t dataSize); void MNNTanh(float* dst, const float* src, size_t dataSize); void MNNSigmoid(float* dst, const float* src, size_t dataSize); void MNNSigmoidLowp(float* dst, const float* src, size_t dataSize); void MNNSiLu(float* dst, const float* src, size_t dataSize); void MNNSiLuLowp(float* dst, const float* src, size_t dataSize); void MNNReluWithSlopeCommon(float* dst, const float* src, size_t size, float slope); void MNNHardSwishCommon(float* dst, const float* src, size_t size); void MNNGeluCommon(float* dst, const float* src, size_t size); void MNNGeluStandardCommon(float* dst, const float* src, size_t size); void MNNSoftmax(float* dest, const float* source, size_t size); void MNNNorm(float* dest, const float* source, const float *gamma, const float *beta, float epsilon, size_t size, bool RMSNorm = false); // Get Pack for MatMul's e , l , h , the pack number must be 1 or 4 * n void MNNGetMatMulPackMode(int* eP, int *lP, int* hP); void MNNGetSparseMatMulPackMode(int* eP, int *lP, int* hP); /** int number = info[0]; int eSrcStride = info[1]; int eDstStride = info[2]; int xStride = info[3]; el: number * 4 0: e 1: l 2: e-offset 3: l-offset */ void MNNPackC4ForMatMul_A(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el); void MNNPackForMatMul_B(float* dest, const float* source, size_t h, size_t l, bool transpose); // parameters: e, l, h, CStride, AStride, BStride void MNNPackedMatMul(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNFunctionInit(); void MNNPackedMatMulRemain(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNPackedMatMul_int4(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNPackedMatMulRemain_int4(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNPackedMatMul_int8(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNPackedMatMulRemain_int8(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void MNNPackForSparseMatMul_B(float* dest, unsigned int* NNZMap, int* dataOffsetMap, int sparseBlockOC, const float* source, size_t h, size_t l, const int eP, bool transpose); struct SparseMatMulParas { float* C; const float* A; const float* B; unsigned int* NNZMap; int* dataOffsetMap; }; void MNNPackedSparseMatMulEpx1(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap); void MNNPackedSparseMatMulEpx4(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap); int MNNGetC4DivNumber(int hP); void MNNAxByClampBroadcastUnit(float* C, const float* A, const float* B, size_t width, size_t cStride, size_t aStride, size_t height, const float* parameters); // dim: 4-element, sizeDW, sizeDH, strideSW, strideDH void MNNTranspose32Bit(int32_t* dstO, const int32_t* srcO, int32_t* dim); // not C4 void MNNTranspose16Bit(int16_t* dstO, const int16_t* srcO, int32_t* dim); // not C4 void MNNVectorTop1Float(float* input, float* maxValue, int32_t* maxIndex, size_t inputCountUnit); void MNNVectorTop1Int32(int32_t* input, int32_t* maxValue, int32_t* maxIndex, size_t inputCountUnit); struct MatMulParam { int32_t e; int32_t l; int32_t h; int32_t numberThread; bool ATranspose; bool BTranspose; }; void MNNComputeMatMulForE_1(const float* A, const float* B, float* C, const float* biasPtr, const MatMulParam* param, size_t tId); void MNNCopyC4Int16WithStride(const float* sourceF, float* destF, size_t srcStride, size_t dstStride, size_t count); void MNNInt8ToInt16(int16_t* dest, const int8_t* source, size_t count); struct SumByAxisParams { ssize_t kernelCountUnitDouble; ssize_t unitColBufferSize; ssize_t DST_XUNIT; ssize_t SRC_UNIT; ssize_t blockNum; ssize_t oneScale; ssize_t valid; ssize_t kernelxy; ssize_t LU; ssize_t inputBlock; }; #ifdef __aarch64__ void MNNPermuteSumWeightInt4Arm86(uint8_t* dest, uint8_t* source, size_t outside, size_t inside, float* kernlesum); void MNNPermuteSumWeightInt4Arm82(uint8_t* dest, uint8_t* source, size_t outside, size_t inside, float* kernlesum); void MNNSumWeightInt8Arm86(float* kernelsum, int8_t* source, size_t outside, size_t reduceAxis, size_t hP, size_t lP); void MNNSumWeightInt8Arm82(float* kernelsum, int8_t* source, size_t outside, size_t reduceAxis, size_t hP, size_t lP); #endif } typedef void(*MNNBinaryExecute)(void* outputRaw, const void* inputRaw0, const void* inputRaw1, int elementSize, int broadcastIndex); typedef void(*MNNUnaryExecute)(void* outputRaw, const void* inputRaw, int elementSize); typedef void(*MNNUnaryExecuteInt8)(void* outputRaw, const void* inputRaw, int elementSize, QuanPrePostParameters* params); typedef void(*MNNCopyWithStride)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); typedef void(*MNNBinaryExecInt8)(int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast); constexpr int InputTileMax = 14; // same value from DynamicGemm.h, cannot include from different backend code. namespace MNN { struct CoreFunctions { // fp8 void (*MNNFp32ToFp8)(uint8_t* dst, const float* src, size_t size); void (*MNNFp16ToFp8)(uint8_t* dst, const uint16_t* src, size_t size); void (*MNNFp8ToFp32)(float* dst, const uint8_t* src, size_t size); void (*MNNFp8ToFp16)(uint16_t* dst, const uint8_t* src, size_t size); // cpu feature bool supportFp16arith = false; bool supportSDot = false; bool supportI8mm = false; /**MatMul Pack and Functions*/ void(*MNNGetMatMulPackMode)(int* eP, int *lP, int* hP); void(*MNNGetSparseMatMulPackMode)(int* eP, int *lP, int* hP); void(*MNNPackC4ForMatMul_A)(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el); void(*MNNPackForMatMul_B)(float* dest, const float* source, size_t h, size_t l, bool transpose); void(*MNNGeneralIm2Col)(float* destOrigin, float const** sourceGroup, const int32_t* info, const int32_t* el, int32_t LP, int32_t pack); // parameters: e, l, h, CStride, AStride, BStride void(*MNNPackedMatMul)(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void(*MNNPackedMatMulRemain)(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b); void(*MNNAbsMax)(const float* source, float* absmax, size_t src_depth_quad, size_t realSize, int pack) = nullptr; void(*MNNQuantScale)(float* absmax, float* quant_scale, float* dequant_scale, size_t thread, size_t batch) = nullptr; void(*MNNDynamicQuant)(const float* src, int8_t* dst, const float* scale, size_t src_depth_quad, size_t realSize, int pack, const float* bias) = nullptr; void(*MNNPackedMatMul_int8)(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) = nullptr; void(*MNNPackedMatMulRemain_int8)(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, const float* k, const float* b) = nullptr; void(*MNNComputeMatMulForH_1)(const float* A, const float* B, float* C, const float* biasPtr, const MatMulParam* param, size_t tId); void(*MNNComputeMatMulForE_1)(const float* A, const float* B, float* C, const float* biasPtr, const MatMulParam* param, size_t tId); void(*MNNCountMaxMinValue)(const float* source, float* minVal, float* maxVal, size_t size); void(*MNNDynamicUpdateConvBiasScale)(float* newbias, float* oldbias, float* weightKernelSum, float* inputZero, size_t ocQuad); void(*MNNAsyQuantInfo)(float* scale, float* bias, float* qscale, float* qbias, float* dstMin, float* dstMax, const float* src, const size_t* info); void(*MNNAsyQuantFunc)(int8_t* dst, const float* src, float* qscale, float* qbias, const size_t* info); typedef void(*MNNPackedMatMulKernel)(float* C, const float* A, const float* B, const size_t* parameter, const float* postParameters, const float* bias); MNNPackedMatMulKernel MNNPackedMatMulOC16Functions[InputTileMax] = {0}; MNNPackedMatMulKernel MNNPackedMatMulOC32Functions[InputTileMax] = {0}; MNNPackedMatMulKernel MNNPackedMatMulOC48Functions[InputTileMax] = {0}; // For Atomic Op MNNBinaryExecute(*MNNSelectBinaryFunctionForFloat)(int opType); MNNUnaryExecute(*MNNSelectUnaryFunctionForFloat)(int opType, int precisionMode); MNNUnaryExecuteInt8(*MNNSelectUnaryFunctionForInt8)(int opType); // B matrix is sparsed typedef void(*MNNPackedSparseMatMul)(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap); void(*MNNAdjustOptimalSparseKernel)(int& sparseBlockOC, MNNPackedSparseMatMul& packedSparseMatMul); /**Lowp Backend Setting*/ void(*MNNFp32ToLowp)(const float* src, int16_t* dst, size_t size); void(*MNNLowpToFp32)(const int16_t* src, float* dst, size_t size); int bytes; // Byte for float int matmulBytes = 0; // Special bytes for dense matmul, C = A*B, A, B is matmulBytes, C is bytes. If 0, means the same as bytes /**NC4HW4's Functions*/ int pack; // For pack * bytes > 16 MNNCopyWithStride(*MNNSelectBlitFunction)(int blitBytes) = nullptr; void(*MNNPackCUnitInt16)(int16_t* dst, const int16_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnitInt16)(int16_t* dst, const int16_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNPackCUnitTransposeInt16)(int16_t* dst, const int16_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnitTransposeInt16)(int16_t* dst, const int16_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNPackCUnitInt8)(int8_t* dst, const int8_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnitInt8)(int8_t* dst, const int8_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNPackCUnitTransposeInt8)(int8_t* dst, const int8_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnitTransposeInt8)(int8_t* dst, const int8_t* src, size_t area, size_t depth, int* areaOffset); void(*MNNPackCUnit)(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnit)(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void(*MNNPackCUnitTranspose)(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); void(*MNNUnpackCUnitTranspose)(float* dst, const float* src, size_t area, size_t depth, int* areaOffset); // NC4HW4's compute function void(*MNNConvRunForLineDepthwise)(float* dst, const float* src, const float* weight, size_t width, size_t src_w_setup, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, size_t height, size_t srcHStep, size_t dstHStep, const float* bias, const float* parameters); void(*MNNAxByClampBroadcastUnit)(float* C, const float* A, const float* B, size_t width, size_t cStride, size_t aStride, size_t height, const float* parameters); void(*MNNMatrixAdd)(float* C, const float* A, const float* B, size_t widthC4, size_t cStride, size_t aStride, size_t bStride, size_t height); void(*MNNMatrixSub)(float* C, const float* A, const float* B, size_t widthC4, size_t cStride, size_t aStride, size_t bStride, size_t height); void(*MNNStrassenMergeCFunction)(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride, size_t eSub, size_t hSub); void(*MNNScaleAndAddBias)(float* dst, const float* src, const float* bias, const float* alpha, size_t planeNumber, size_t biasNumber); void(*MNNGridSampleComputeCord)(float* dst, const float* src, size_t inH, size_t inW, size_t outH, size_t outW, bool alignCorners); void(*MNNGridSampleInterp)(float* outputPtr, const float* inputPtr, const float* cordPtr, size_t inH, size_t inW, size_t outW, size_t channelCUnit, size_t inOffset, size_t outOffset, bool sampleMode, bool padMode); void (*MNNGridSampleInterpGrad)(float* outputPtr, float* inputPtr, const float* cordPtr, size_t inH, size_t inW, size_t outW, size_t channelCUnit, size_t inOffset, size_t outOffset, bool sampleMode, bool padMode); void(*MNNGridSampleComputeCord3D)(float* dst, const float* src, size_t inD, size_t inH, size_t inW, size_t outD, size_t outH, size_t outW, bool alignCorners); void(*MNNGridSampleInterp3D)(float* outputPtr, const float* inputPtr, const float* cordPtr, size_t inD, size_t inH, size_t inW, size_t outW, size_t channelCUnit, size_t inOffset, size_t outOffset, bool sampleMode, bool padMode) = nullptr; void(*MNNRoiPoolingMax)(float* dst, const float* src, int hLen, int wLen, int iw); void(*MNNRoiAlignMax)(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth); void(*MNNRoiAlignAvg)(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth); float penalty; void(*MNNCopyC4WithStride)(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count); void(*MNNAddC4WithStride)(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count); typedef void (*WinoTransPackFunc)(float* srcBlock, float* dstStart, size_t dstStep); WinoTransPackFunc(*chooseWinoSourceTransformPack)(int k, int w, int ePack, int lPack, int packCUnit); typedef void (*WinoUnrollTransFunc)(const float* srcBlock, float* dstStart, size_t srcRowStep, size_t dstRowStep, size_t srcStep, size_t dstStep); typedef void (*WinoUnrollDestTransFunc)(const float* srcBlock, float* dstStart, const float* bias, const float* postParameters, size_t srcRowStep, size_t dstRowStep, size_t srcStep, size_t dstStep); WinoUnrollTransFunc(*chooseWinoSourceUnrollTransform)(int k, int w); void(*chooseWinoDestUnrollTransform)(WinoUnrollDestTransFunc *destFunctions, size_t maxUnit, int k, int h); void(*MNNDeconvRunForUnitDepthWise)(const float* dst, float* src, const float* weight, size_t fw, size_t fh, size_t weight_y_step, size_t dilateX_step, size_t dilateY_step); void(*MNNDeconvRunForLineDepthwise)(const float* dst, float* src, const float* weight, size_t width, size_t src_w_setup, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step); void(*MNNDepthwiseConvFastKernel)(float* dst, const float* src, const float* weight, size_t width, size_t src_w_setup, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, size_t height, size_t srcHStep, size_t dstHStep, const float* bias, const float* parameters) = nullptr; void(*MNNReluWithSlopeChannel)(float* dst, const float* src, const float* slope, size_t sizeQuad, size_t depthQuad); void(*MNNPoolingAvg)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput, int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth, int strideHeight, int padWidth, int padHeight, int padType, int countType); void(*MNNPoolingMax)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput, int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth, int strideHeight, int padWidth, int padHeight, int padType, int countType); void(*MNNPoolingMaxWithRedice)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput, int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth, int strideHeight, int padWidth, int padHeight, int padType, int countType, int *RediceOutput); // ImageProcess Funtions void(*MNNRGBAToBGRA)(const unsigned char* source, unsigned char* dest, size_t count); void(*MNNNV21ToRGBA)(const unsigned char* source, unsigned char* dest, size_t count); void(*MNNNV21ToRGB)(const unsigned char* source, unsigned char* dest, size_t count); void(*MNNNV21ToBGRA)(const unsigned char* source, unsigned char* dest, size_t count); void(*MNNNV21ToBGR)(const unsigned char* source, unsigned char* dest, size_t count); void(*MNNC1ToFloatC1)(const unsigned char* source, float* dest, const float* mean, const float* normal, size_t count); void(*MNNC3ToFloatC3)(const unsigned char* source, float* dest, const float* mean, const float* normal, size_t count); void(*MNNC3ToFloatRGBA)(const unsigned char* source, float* dest, const float* mean, const float* normal, size_t count); void(*MNNsampleBilinearCommon)(const unsigned char* source, unsigned char* dest, MNN::CV::Point* points, size_t count, size_t iw, size_t ih, size_t yStride, size_t bpp); void(*MNNSamplerC4Nearest)(const unsigned char* source, unsigned char* dest, MNN::CV::Point* points, size_t sta, size_t count, size_t capacity, size_t iw, size_t ih, size_t yStride); void(*MNNSamplerC4Bilinear)(const unsigned char* source, unsigned char* dest, MNN::CV::Point* points, size_t sta, size_t count, size_t capacity, size_t iw, size_t ih, size_t yStride); void(*MNNSampleC4Bilinear)(const unsigned char* source, unsigned char* dest, MNN::CV::Point* points, size_t sta, size_t count, size_t capacity, size_t iw, size_t ih, size_t yStride); void(*MNNSampleBilinear)(const unsigned char* source, unsigned char* dest, MNN::CV::Point* points, size_t count, size_t iw, size_t ih, size_t yStride, size_t bpp); void(*MNN4BitcopyWithStride)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNN2BitcopyWithStride)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNN1BitcopyWithStride)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNN4BitcopyFast)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNN2BitcopyFast)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNN1BitcopyFast)(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds); void(*MNNAccumulateSequenceNumber)(float* dst, const float* src, int size); void(*MNNSumByAxisLForMatmul_A)(float* dest, int8_t* source, const float* dequantScale, ssize_t realDstCount, SumByAxisParams sumParams); void(*MNNReorderWeightInt4)(uint8_t* dest, const uint8_t* source, int32_t* shape, size_t size, float* kernelsum); void(*MNNSumWeightInt8)(float* kernlesum, int8_t* source, size_t outside, size_t reduceAxis, size_t hP, size_t lP); }; void MNNCoreFunctionInit(); CoreFunctions* MNNGetCoreFunctions(); }; #endif /* CommonOptFunction_h */