source/backend/cpu/compute/ConvInt8TiledExecutor.cpp (1,320 lines of code) (raw):
// ConvInt8TiledExecutor.cpp
// MNN
//
// Created by MNN on 2019/5/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvInt8TiledExecutor.hpp"
#include "ConvolutionTiledExecutor.hpp"
#include "core/Macro.h"
#include "core/BufferAllocator.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "core/TensorUtils.hpp"
#define QUANT_INFO_BYTES 4
namespace MNN {
ConvInt8TiledExecutor::ConvInt8TiledExecutor(Backend* backend, const Op* op): CPUConvolution(op->main_as_Convolution2D()->common(), backend) {}
ConvInt8TiledExecutor::ConvInt8TiledExecutor(Backend* backend, const Op* op, std::shared_ptr<ResourceInt8> res): CPUConvolution(op->main_as_Convolution2D()->common(), backend), mResourceInt8(res) {
if (!res->mDynamicQuant) {
mMutableResource.reset(new MutableResourceInt8(res, backend));
mValid = mMutableResource->mValid;
}
}
ConvInt8TiledExecutor::~ConvInt8TiledExecutor() {
// Do nothing
}
bool ConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
return false;
}
ErrorCode ConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
if (nullptr != mMutableResource) {
mMutableResource->updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), TensorUtils::getQuantInfo(outputs[0]));
}
CPUConvolution::onResize(inputs, outputs);
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, static_cast<CPUBackend*>(backend())->functions(), static_cast<CPUBackend*>(backend())->int8Functions());
return NO_ERROR;
}
void ConvInt8TiledExecutor::initializeConvInt8QuantInfo(std::shared_ptr<CPUConvolution::ResourceInt8> &resourceInt8, const Convolution2D *conv2D) {
// input/output scale&zeorpoint
resourceInt8->mActBits = 8;
resourceInt8->mWeightAsymmetricQuant = false;
if (conv2D->symmetricQuan()) {
resourceInt8->mActBits = conv2D->symmetricQuan()->nbits();
}
if (conv2D->bias() && conv2D->quanParameter()->alpha()) {
resourceInt8->mUseConvQuan = false;
}
resourceInt8->mInputZeroPoint = 0;
resourceInt8->mOutputZeroPoint = 0;
resourceInt8->mClampMin = -128;
resourceInt8->mClampMax = 127;
if (conv2D->symmetricQuan()) {
resourceInt8->mInputZeroPoint = conv2D->symmetricQuan()->zeroPoint();
resourceInt8->mOutputZeroPoint = conv2D->symmetricQuan()->outputZeroPoint();
resourceInt8->mClampMin = conv2D->symmetricQuan()->clampMin();
resourceInt8->mClampMax = conv2D->symmetricQuan()->clampMax();
}
if (conv2D->quanParameter() != nullptr) {
resourceInt8->mInputScale = conv2D->quanParameter()->scaleIn();
resourceInt8->mOutputScale = conv2D->quanParameter()->scaleOut();
}
resourceInt8->mRelu = conv2D->common()->relu() || conv2D->common()->relu6();
if (conv2D->symmetricQuan() && conv2D->symmetricQuan()->outputDataType() == MNN::DataType_DT_FLOAT) {
resourceInt8->mOutputZeroPoint = 0;
resourceInt8->mOutputScale = 1.0f;
}
}
void ConvInt8TiledExecutor::reorderWeight(uint8_t* dst, const uint8_t* src, int32_t* info, int32_t initval, float* kernelsum, weightSummerFuncion summerFunc) {
// weight shape = {UP_DIV(oc, UNIT), blockNum, kernelCount* UP_DIV(ic / blockNum, SRC_UNIT), UNIT, SRC_UNIT};
MNN_ASSERT(dst != nullptr && src != nullptr);
int blockNum = info[0];
int oc = info[1];
int ic = info[2];
int kernelCount = info[3];
int UNIT = info[4];
int SRC_UNIT = info[5];
int blockL = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
int stride0 = blockNum * SRC_UNIT * blockL * UNIT; // weight->stride(0)
int stride1 = blockL * SRC_UNIT * UNIT; // weight->stride(1)
int stride2 = UNIT * SRC_UNIT; // weight->stride(2)
int weightlen = stride0 * UP_DIV(oc, UNIT);
memset(dst, initval, weightlen);
auto hU = UP_DIV(oc, UNIT);
auto lU = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
bool fast = (kernelCount == 1 && ROUND_UP(oc, UNIT) == oc && ROUND_UP(ic, SRC_UNIT) == ic);
if (fast) {
for (int i = 0; i < hU; ++i) {
for (int k = 0; k < UNIT; ++k) {
for (int bl = 0; bl < blockNum; ++bl) {
for (int j = 0; j < blockL; ++j) {
int srcindex = (i * UNIT + k) * ic + bl * (lU * SRC_UNIT) + j * SRC_UNIT;
int dstindex = i * stride0 + bl * stride1 + j * stride2 + k * SRC_UNIT;
memcpy(dst + dstindex, src + srcindex, SRC_UNIT);
}
}
}
}
} else {
AutoStorage<uint8_t> tmpBuffer(ic * kernelCount * ROUND_UP(oc, UNIT));
memset(tmpBuffer.get(), 0, tmpBuffer.size());
auto area = ic * kernelCount;
// [oc, ic, k2] -> [hU, ic, k2, hP]
for (int i = 0; i < oc; ++i) {
auto outId = i / UNIT;
auto inId = i % UNIT;
for (int j = 0; j < area; ++j) {
tmpBuffer.get()[outId * area * UNIT + j * UNIT + inId] = src[i * area + j];
}
}
// [hU, ic, (k2, hP)] -> [hU, blocknum, lU, (k2, hP), lP]
AutoStorage<uint8_t> packedBuffer(weightlen);
memset(packedBuffer.get(), 0, weightlen);
area = kernelCount * UNIT;
auto blockic = ic / blockNum;
for (int i = 0; i < hU; ++i) {
for (int j = 0; j < ic; ++j) {
int bk = j / blockic;
int blu = (j % blockic) / SRC_UNIT;
int blp = (j % blockic) % SRC_UNIT;
for (int k = 0; k < area; ++k) {
int dstindex = i * stride0 + bk * stride1 + blu * kernelCount * stride2 + k * SRC_UNIT + blp;
int srcindex = i * ic * area + j * area + k;
packedBuffer.get()[dstindex] = tmpBuffer.get()[srcindex];
}
}
}
// [(hU, blocknum), lU, k2, (hP, lP)] -> [(hU, blocknum), k2, lU, (hP, lP)]
area = UNIT * SRC_UNIT;
auto bklU = UP_DIV(ic, SRC_UNIT) / blockNum;
for (int bk = 0; bk < blockNum * hU; ++bk) {
for (int i = 0; i < kernelCount; ++i) {
for (int j = 0; j < bklU; ++j) {
memcpy(dst + bk * stride1 + i * bklU * area + j * area, packedBuffer.get() + bk * stride1 + i * area + j * kernelCount * area, area);
}
}
}
} // not fast
if (summerFunc != nullptr && kernelsum != nullptr) {
summerFunc(kernelsum, (int8_t*)dst, blockNum * hU, blockL, UNIT, SRC_UNIT);
}
}
void ConvInt8TiledExecutor::packWeightAndQuantInfo(int8_t* dstbuffer, const int8_t* weight, const int8_t* quantInfo, int32_t* info, int infoBytes) {
int blockNum = info[0];
int ocDiv = info[1];
int blockL = info[2];
int UNIT = info[3];
int SRC_UNIT = info[4];
auto ocUp4 = info[5];
auto src0 = weight; // int8 weight: [oc/hp, blocknum, ic/lp*(kx*ky)/blocknum, hp, lp]
auto src1 = quantInfo; // dequant scale: [blocknum, ocUp4]
auto src2 = src1 + infoBytes * ocUp4 * blockNum; // dequant bias: [blocknum, ocUp4]
int stride0 = info[0] * info[2] * info[3] * info[4];
int stride1 = info[2] * info[3] * info[4];
// dst: [oc/hp, blocknum, packedUnit]
// packedUnit: [ic/lp*(kx*ky)/blocknum, hp, lp] + [hp] + [hp]
for (int hU = 0; hU < ocDiv; ++hU) {
auto huPtr = dstbuffer + hU * blockNum * (stride1 + 2 * UNIT * infoBytes);
int scaleCount = ALIMIN(ocUp4 - hU * UNIT, UNIT);
for (int bl = 0; bl < blockNum; ++bl) {
auto blockPtr = huPtr + bl * (stride1 + 2 * scaleCount * infoBytes);
memcpy(blockPtr, src0 + bl * stride1 + hU * stride0, stride1);
memcpy(blockPtr + stride1, src1 + (bl * ocUp4 + hU * UNIT) * infoBytes, scaleCount * infoBytes);
memcpy(blockPtr + stride1 + scaleCount * infoBytes, src2 + (bl * ocUp4 + hU * UNIT) * infoBytes, scaleCount * infoBytes);
}
}
}
static void _computeReorderQuantInfo(std::shared_ptr<CPUConvolution::ResourceInt8> resource, std::shared_ptr<ConvolutionCommon::Int8Common> quantCommon, int outputCount, int kernelCount, int pack, AutoStorage<int8_t>& reorderedQuantInfo, float* ikernelSum, int HP, bool realInt4OrInt8) {
// Only used for dynamic quant:
// copy gemm bias
// copy/compute real dequant bias/scale
// dequant weight kernel sum
int ocUp4 = ROUND_UP(outputCount, pack);
int ocUpHp = ROUND_UP(outputCount, HP);
int blockNum = resource->mBlockNum;
int scaleSize = blockNum * ocUp4; // pack size.
int blockSize = kernelCount / blockNum;
int originOffset = 0;
if (quantCommon->canUseInt4) {
originOffset = -8;
}
// Save weight quant alpha and zero: wf=alpha*wi+zero
auto alphaPtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
auto biasPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(alphaPtr) + scaleSize * QUANT_INFO_BYTES);
if (outputCount % pack != 0) {
::memset(alphaPtr, 0, scaleSize * QUANT_INFO_BYTES);
::memset(biasPtr, 0, scaleSize * QUANT_INFO_BYTES);
}
auto quanInfoPtr = quantCommon->alpha.get();
auto weightKernelSum = resource->mWeightKernelSum->host<float>();
::memset(weightKernelSum, 0, resource->mWeightKernelSum->size());
bool blockQuantInput = (resource->mWeightKernelSum->length(0) / QUANT_INFO_BYTES == ocUp4) ? false : true;
int ocDiv4 = UP_DIV(outputCount, pack);
// dstkernelsum: [hU,blocknum,min(hP, pack)]
if (quantCommon->asymmetric) {
for (int i = 0; i < outputCount; ++i) {
float accum = 0.f;
auto ocOutside = i / HP;
auto ocInside = i % HP;
int remain = ALIMIN(HP, ocUp4 - ocOutside * HP);
for (int j = 0; j < blockNum; ++j) {
int index = i * blockNum + j;
int srcSumIndex = ocOutside * blockNum * HP + j * HP + ocInside; // ikernelsum: [hU,blocknum,hP]
alphaPtr[j * ocUp4 + i] = quanInfoPtr[2 * index + 1];
biasPtr[j * ocUp4 + i] = quanInfoPtr[2 * index] + (float)originOffset * quanInfoPtr[2 * index + 1];
if (realInt4OrInt8) {
accum += (ikernelSum[srcSumIndex] * quanInfoPtr[2 * index + 1] + blockSize * biasPtr[j * ocUp4 + i]);
} else {
accum += ((ikernelSum[srcSumIndex] - blockSize * 8)* quanInfoPtr[2 * index + 1] + blockSize * quanInfoPtr[2 * index]);
}
if (blockQuantInput) {
int dstSumIndex = ocOutside * blockNum * HP + j * remain + ocInside;
weightKernelSum[dstSumIndex] = accum;
accum = 0;
}
}
if (!blockQuantInput) {
weightKernelSum[i] = accum;
}
}
} else {
for (int i = 0; i < outputCount; ++i) {
float accum = 0.f;
auto ocOutside = i / HP;
auto ocInside = i % HP;
int remain = ALIMIN(HP, ocUp4 - ocOutside * HP);
for (int j = 0; j < blockNum; ++j) {
int index = i * blockNum + j;
int srcSumIndex = ocOutside * blockNum * HP + j * HP + ocInside; // ikernelsum: [hU,blocknum,hP]
alphaPtr[j * ocUp4 + i] = quanInfoPtr[index];
biasPtr[j * ocUp4 + i] = (float)originOffset * quanInfoPtr[index];
if (realInt4OrInt8) {
accum += (ikernelSum[srcSumIndex] * quanInfoPtr[index] + blockSize * biasPtr[j * ocUp4 + i]);
} else {
accum += ((ikernelSum[srcSumIndex] - blockSize * 8) * quanInfoPtr[index]);
}
if (blockQuantInput) {
int dstSumIndex = ocOutside * blockNum * HP + j * remain + ocInside;
weightKernelSum[dstSumIndex] = accum;
accum = 0;
}
}
if (!blockQuantInput) {
weightKernelSum[i] = accum;
}
}
}
}
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Op* op, std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon, bool isDynamicQuant) : ConvInt8TiledExecutor(backend, op) {
// convolution info
auto convOp = op->main_as_Convolution2D();
int kernelCount = mCommon->kernelX() * mCommon->kernelY();
int oc = convOp->common()->outputCount();
int ic = convOp->common()->inputCount();
int blockNum = 1;
if (quanCommon) {
int dequantCnt = quanCommon->alphaSize;
if (quanCommon->asymmetric) {
dequantCnt /= 2;
}
blockNum = dequantCnt / oc;
}
// backend info
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend)->functions();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
int pack = gcore->pack;
// compute info
int ocUp4 = ROUND_UP(oc, pack);
int lU = UP_DIV(ic / blockNum, SRC_UNIT) * kernelCount;
int scaleSize = ocUp4 * blockNum;
std::vector<int> shape = {blockNum, UP_DIV(oc, UNIT), lU, UNIT, SRC_UNIT};
mResourceInt8.reset(new CPUConvolution::ResourceInt8);
mResourceInt8->mWeightAsymmetricQuant = quanCommon ? quanCommon->asymmetric : false;
mResourceInt8->mActBits = 8;
mResourceInt8->mBlockNum = blockNum;
if (quanCommon && quanCommon->canUseInt4) {
shape[4] = SRC_UNIT / 2;
mResourceInt8->mActBits = 4;
mResourceInt8->mWeightAsymmetricQuant = true; // offset: 8 from uint8_t
}
if (isDynamicQuant) {
mResourceInt8->mDynamicQuant = true;
// Relu/Relu6 post parameters
auto postPtr = getPostParameters();
mResourceInt8->mReluThreshold.resize(2);
mResourceInt8->mReluThreshold[0] = postPtr[2];
mResourceInt8->mReluThreshold[1] = postPtr[3];
if (gcore->bytes == 2) {
gcore->MNNFp32ToLowp(mResourceInt8->mReluThreshold.data(), reinterpret_cast<int16_t*>(mResourceInt8->mReluThreshold.data()), 2);
}
}
// buffer allocate
auto quantlen = 2 * blockNum * ROUND_UP(oc, pack) * QUANT_INFO_BYTES;
auto weightlen = shape[0] * shape[1] * shape[2] * shape[3] * shape[4];
mResourceInt8->mWeightInt8.reset(Tensor::createDevice<uint8_t>({weightlen + quantlen}));
mResourceInt8->mOriginBias.reset(Tensor::createDevice<int32_t>({ocUp4})); // float
auto dynamicOption = static_cast<CPUBackend*>(backend)->getRuntime()->hint().dynamicQuantOption; // input ic block quant.
if (dynamicOption != 2) {
mResourceInt8->mWeightKernelSum.reset(Tensor::createDevice<uint8_t>({QUANT_INFO_BYTES * ocUp4}));
} else {
mResourceInt8->mWeightKernelSum.reset(Tensor::createDevice<uint8_t>({blockNum * QUANT_INFO_BYTES * ocUp4}));
}
auto res = backend->onAcquireBuffer(mResourceInt8->mOriginBias.get(), Backend::STATIC);
res &= backend->onAcquireBuffer(mResourceInt8->mWeightKernelSum.get(), Backend::STATIC);
res &= backend->onAcquireBuffer(mResourceInt8->mWeightInt8.get(), Backend::STATIC);
if (!res) {
MNN_ERROR("weight acquire buffer error\n");
return;
}
bool useCachedMmap = backend->getRuntime()->hint().useCachedMmap > 1;
if (useCachedMmap) {
return;
}
// read weight, weight's scale&bias, convolution bias
::memset(mResourceInt8->mOriginBias->host<float>(), 0, ocUp4 * sizeof(float));
if (!isDynamicQuant) {
mResourceInt8->mDynamicQuant = false;
const int8_t* weightNotPacked;
std::shared_ptr<float> scaleAndBias(new float[ocUp4 * 2], [](void* ptr) {
delete [] (float*)ptr;
});
memset(scaleAndBias.get(), 0, ocUp4 * 2 * sizeof(float));
int weightSize;
ConvolutionCommon::getConvInt8Parameters(op, quanCommon, backend, weightNotPacked, weightSize, (float*)scaleAndBias.get(), mResourceInt8->mOriginBias->host<int32_t>(), ocUp4);
initializeConvInt8QuantInfo(mResourceInt8, convOp);
auto L = ic * kernelCount;
auto ptrWeight = (int8_t*)weightNotPacked;
auto ptrWeightScale = scaleAndBias.get();
auto ptrWeightBias = ptrWeightScale + ocUp4;
for (int i = 0; i < oc; i++) {
int temp = 0;
for (int j = 0; j < L; j++) {
temp += (int)ptrWeight[j + i * L];
}
mResourceInt8->mWeightKernelSum->host<float>()[i] = (temp * ptrWeightScale[i] + L * ptrWeightBias[i]);
#ifdef MNN_USE_SSE
if (mResourceInt8->mUseConvQuan) {
mResourceInt8->mOriginBias->host<int32_t>()[i] -= 128 * temp;
}
#endif
}
mMutableResource.reset(new MutableResourceInt8(mResourceInt8, backend, scaleAndBias.get()));
// reorder weight&scale&bias
int bytes = 4;
auto resourceInt8 = mResourceInt8;
auto reorderFunction = [weightNotPacked, weightlen, oc, ic, kernelCount, UNIT, SRC_UNIT, shape, resourceInt8, bytes, L, ocUp4, quantlen, scaleAndBias]()
{
AutoStorage<uint8_t> weightReordered(weightlen);
if (!weightReordered.get()) {
MNN_ERROR("Memory not enough for quant model weight reorder\n");
return -1;
}
int32_t info[6] = {1, oc, ic, kernelCount, UNIT, SRC_UNIT};
ConvInt8TiledExecutor::reorderWeight((uint8_t*)weightReordered.get(), (uint8_t*)weightNotPacked, info, 0);
int32_t params[6] = {shape[0], shape[1], shape[2], shape[3], shape[4], quantlen/ (2 * QUANT_INFO_BYTES * 1)};
ConvInt8TiledExecutor::packWeightAndQuantInfo(resourceInt8->mWeightInt8->host<int8_t>(), (int8_t*)weightReordered.get(), (int8_t*)scaleAndBias.get(), params, QUANT_INFO_BYTES);
return 0;
};
static_cast<CPUBackend*>(backend)->enqueueTask(reorderFunction);
// gemmInt8 kernel
mGemmKernel = core->Int8GemmKernel;
#ifdef MNN_USE_SSE
int actBits = convOp->symmetricQuan()->nbits();
if (actBits <= 7) {
mGemmKernel = core->Int8GemmKernelFast;
}
#else
if(convOp->symmetricQuan()->method() == QuantizeAlgo_OVERFLOW_AWARE){
mGemmKernel = core->Int8GemmKernelFast;
}
#endif
return; // offline quant
}
// dynamic quant
bool directReadInt4weight = (kernelCount == 1 && ROUND_UP(oc, UNIT) == oc && ROUND_UP(ic, SRC_UNIT) == ic);
#ifdef MNN_KLEIDIAI_ENABLED
if(quanCommon->canUseInt4) {
bool bFP16 = gcore->bytes == 2 ? true : false;
bool bAsym = quanCommon->asymmetric;
size_t blkSize = mResourceInt8->mBlockNum == 1 ? 0 : ic / mResourceInt8->mBlockNum;
KleidiAI::AccelType accelType = KleidiAI::getQIntAccelType(4, bAsym, blkSize);
if (!KleidiAI::mKaiInitialized) {
KleidiAI& kai = KleidiAI::getInstance(*MNNGetCPUInfo(), bFP16, false);
}
KleidiAI& kai = KleidiAI::getInstance();
if(!kai.isLoaded(accelType)) {
kai.setLoaded(accelType);
kai.printInfo(accelType);
}
if(kai.canAccelerate(accelType)) {
AutoStorage<int8_t> reorderedQuantInfo;
reorderedQuantInfo.reset(2 * scaleSize * QUANT_INFO_BYTES);
if (reorderedQuantInfo.get() == nullptr) {
MNN_ERROR("Memory not enough\n");
return;
}
//Prepare scale and zero data.
{
int outputCount = convOp->common()->outputCount();
int originOffset = -8;
auto quanInfoPtr = quanCommon->alpha.get();
auto scalePtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
auto zeroPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(scalePtr) + scaleSize * QUANT_INFO_BYTES);
if (quanCommon->asymmetric) {
for (int i = 0; i < blockNum; ++i) {
auto dstScale = scalePtr + i * ocUp4;
auto dstZero = zeroPtr + i * ocUp4;
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstScale[j] = quanInfoPtr[2 * scaleIndex + 1];
dstZero[j] = quanInfoPtr[2 * scaleIndex] + (float)originOffset * dstScale[j];
}
}
} else {
for (int i = 0; i < blockNum; ++i) {
auto dstScale = scalePtr + i * ocUp4;
auto dstZero = zeroPtr + i * ocUp4;
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstScale[j] = quanInfoPtr[scaleIndex];
dstZero[j] = (float)originOffset * dstScale[j];
}
}
}
}
mAccelType = accelType;
int n = oc;
int k = ic;
int packedWeightSize = kai.getRhsPackedSize(mAccelType, n, k, blkSize);
//Alloc packed weight tensor.
mResourceInt8->mWeightInt8.reset(Tensor::createDevice<uint8_t>({packedWeightSize}));
bool success = backend->onAcquireBuffer(mResourceInt8->mWeightInt8.get(), Backend::STATIC);
if (!success) {
MNN_ERROR("Out of static memory!\n");
return;
}
size_t paraNum = scaleSize;
float *scalePtr = reinterpret_cast<float*>(reorderedQuantInfo.get());
float *zeroPtr = reinterpret_cast<float*>(reorderedQuantInfo.get()) + paraNum;
float *biasPtr = mResourceInt8->mOriginBias->host<float>();
//Reload some parameters to fit ukernels' layout.
auto quanInfoPtr = quanCommon->alpha.get();
if(bAsym) {
for(int i = 0; i < paraNum; i++) {
zeroPtr[i] = quanInfoPtr[i * 2];
scalePtr[i] = quanInfoPtr[i * 2 + 1];
}
} else {
if(blkSize != 0) {
memcpy(scalePtr, (uint8_t*)quanInfoPtr, paraNum * sizeof(float));
}
}
//Run rhs pack.
auto weightPackedData = mResourceInt8->mWeightInt8->host<uint8_t>();
kai.runRhsPack(mAccelType, 1, n, k, blkSize, 0/*unused*/,
(uint8_t*)quanCommon->weight.get(),
(const void*)scalePtr, (const void*)zeroPtr, (const void*)biasPtr,
weightPackedData, directReadInt4weight);
return;
}
}
#endif
auto target = mResourceInt8;
// Save bias
if (convOp->bias()) {
::memcpy(mResourceInt8->mOriginBias->host<float>(), convOp->bias()->data(), oc * sizeof(float));
}
auto function = [shape, UNIT, SRC_UNIT, quanCommon, weightlen, scaleSize, directReadInt4weight, blockNum, ic, oc, quantlen, kernelCount, pack, convOp, gcore, target]() -> int {
auto sh = shape;
AutoStorage<int8_t> weightReordered(weightlen);
AutoStorage<int8_t> reorderedQuantInfo(2 * scaleSize * QUANT_INFO_BYTES);
AutoStorage<int8_t> kernelsum(blockNum * ROUND_UP(oc, UNIT) * QUANT_INFO_BYTES);
if (weightReordered.get() == nullptr || reorderedQuantInfo.get() == nullptr || kernelsum.get() == nullptr) {
MNN_ERROR("Memory not enough\n");
return -1;
}
/* 1. reorder weight */
if (quanCommon->canUseInt4 && directReadInt4weight) {
auto srcPtr = (uint8_t*)quanCommon->weight.get();
auto dstPtr = (uint8_t*)weightReordered.get();
::memset(dstPtr, 0, weightlen);
gcore->MNNReorderWeightInt4(dstPtr, srcPtr, sh.data(), sh.size(), (float*)kernelsum.get());
} else { // int4 weight but oc/ic not packed
auto weightLength = quanCommon->weight.size();
int blocksize = ic * kernelCount / blockNum;
int originOffset = 0;
int32_t info[6] = {blockNum, oc, ic, kernelCount, UNIT, SRC_UNIT};
if (quanCommon->canUseInt4) {
originOffset = -8;
auto srcPtr = reinterpret_cast<uint8_t*>(quanCommon->weight.get());
std::vector<uint8_t> tmpWeight(weightLength * 2);
for (int j = 0; j < oc; ++j) {
for (int k = 0; k < blockNum; ++k) {
for (int i = 0; i < blocksize; ++i) {
int index = j * blockNum * blocksize + k * blocksize + i;
uint8_t w_ = srcPtr[index / 2];
int truew = index % 2 ? (w_ & 0x0f) : (w_ >> 4);
tmpWeight[index] = truew;
}
}
}
AutoStorage<uint8_t> packedInt8weight(weightlen * 2);
if (packedInt8weight.get() == nullptr) {
MNN_ERROR("Weight reorder memory not enough!\n");
return -1;
}
reorderWeight(packedInt8weight.get(), (uint8_t*)tmpWeight.data(), info, 0, (float*)kernelsum.get(), gcore->MNNSumWeightInt8);
// pack two int4 to int8
int leng = weightlen * 2;
auto srcint4Ptr = (uint8_t*)packedInt8weight.get();
auto dstint4Ptr = (uint8_t*)weightReordered.get();
int permuteUnit = UNIT * SRC_UNIT;
int halfPermuteStride = static_cast<int32_t>(permuteUnit / 2);
for (int i = 0; i < leng / permuteUnit; ++i) {
auto src0 = srcint4Ptr + i * permuteUnit;
auto dst0 = dstint4Ptr + i * halfPermuteStride;
for (int j = 0; j < halfPermuteStride; ++j) {
int s0 = src0[j];
int s1 = src0[j + halfPermuteStride];
int d = (s0) * 16 + (s1);
dst0[j] = d;
}
}
} else { // int8 weight
reorderWeight((uint8_t*)weightReordered.get(), (uint8_t*)quanCommon->weight.get(), info, 0, (float*)kernelsum.get(), gcore->MNNSumWeightInt8);
}
}
/* 2. compute and order dequant scale&bias */
bool notConvertInt4ToInt8 = true;
if (quanCommon->canUseInt4 && !directReadInt4weight) {
notConvertInt4ToInt8 = false;
}
_computeReorderQuantInfo(target, quanCommon, oc, kernelCount * ic, pack, reorderedQuantInfo, (float*)kernelsum.get(), UNIT, notConvertInt4ToInt8);
/* 3. put weight and quantInfo together */
int32_t params[6] = {shape[0], shape[1], shape[2], shape[3], shape[4], quantlen / (2 * QUANT_INFO_BYTES * blockNum)};
ConvInt8TiledExecutor::packWeightAndQuantInfo(target->mWeightInt8->host<int8_t>(), (int8_t*)weightReordered.get(), reorderedQuantInfo.get(), params, QUANT_INFO_BYTES);
return 0;
};
static_cast<CPUBackend*>(backend)->enqueueTask(std::move(function));
}
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Op* op, const DenseConvInt8TiledExecutor& exe)
: ConvInt8TiledExecutor(backend, op, exe.mResourceInt8), mGemmKernel(exe.mGemmKernel) {
}
DenseConvInt8TiledExecutor::~DenseConvInt8TiledExecutor() {
// Do nothing
}
bool DenseConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
auto exe = new DenseConvInt8TiledExecutor(bn, op, *this);
if (!exe->valid()) {
return false;
}
#ifdef MNN_KLEIDIAI_ENABLED
exe->mAccelType = this->mAccelType;
#endif
*dst = exe;
return true;
}
void DenseConvInt8TiledExecutor::getPackParameter(int* Unit, int* srcUnit, int* DestUnit, const CoreInt8Functions* core) {
core->MNNGetGemmUnit(Unit, srcUnit, DestUnit);
}
ErrorCode DenseConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
// Initialize.
mUseBatchQuan = false;
mIm2ColBasedInt8 = true;
auto option = static_cast<CPUBackend*>(backend())->getRuntime()->hint().dynamicQuantOption;
int batch = inputs[0]->batch();
int inC = inputs[0]->channel();
auto output = outputs[0];
int inputPlane = batch * inputs[0]->width() * inputs[0]->height();
auto planeSize = output->width() * output->height() * output->batch();
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
auto gcore =static_cast<CPUBackend*>(backend())->functions();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
int kernelCount = mCommon->kernelY() * mCommon->kernelX();
bool fastway = (kernelCount == 1) && (output->width() == inputs[0]->width()) && (output->height() == inputs[0]->height()) && (mCommon->strideX() * mCommon->strideY()) == 1;
if (inputPlane > 1) {
mUseBatchQuan = true;
}
if (!fastway) { // general conv
mIm2ColBasedInt8 = false;
if (planeSize > 1) {
mUseBatchQuan = true;
}
if (option == 1) { // lowest level.
mIm2ColBasedInt8 = true;
mUseBatchQuan = false;
}
}
float weightBytes = mResourceInt8->mActBits == 4 ? 0.5 : 1;
mBlockNum = mResourceInt8->mBlockNum;
#ifdef MNN_KLEIDIAI_ENABLED
KleidiAI& kai = KleidiAI::getInstance();
if(mResourceInt8->mDynamicQuant && mResourceInt8->mActBits == 4 && kai.canAccelerate(mAccelType)) {
MNN_ASSERT(kai.isLoaded(mAccelType));
const size_t m = inputs[0]->batch(); //lhs vector number.
const size_t n = outputs[0]->channel(); //rhs vector number.
const size_t k = inputs[0]->channel(); //vector size.
const size_t blkSize = mBlockNum == 1 ? 0 : k / mBlockNum;
int packedSize = kai.getLhsQuantedPackedSize(mAccelType, m, k, blkSize);
int elementSize = kai.isHalf() ? sizeof(__fp16) : sizeof(float);
if(m > 1 && !kai.isLinear()) {
int srcSize = m * k * elementSize;
int dstSize = m * n * elementSize;
int extraSize = srcSize > dstSize ? srcSize : dstSize;
packedSize += extraSize;
}
//Split mTempIm2ColBuffer as two parts for linear/tile transfer:
//Part0: Lhs_packed.
//Part1: Lhs/Dst before transfer.
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({packedSize}));
bool success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (!success) {
MNN_ERROR("Out of dynamic memory!\n");
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
return NO_ERROR;
}
#endif
CPUConvolution::onResize(inputs, outputs);
if (mResourceInt8->mDynamicQuant == false) {
mMutableResource->updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), TensorUtils::getQuantInfo(outputs[0]));
if (!mMutableResource->mResource->mUseConvQuan) {
// In some previous quantized models, input's scale already fused with weight's scale and output's scale.
// So there is no need to read input's scale additionally.
mBatchQuantInfo.reset(Tensor::createDevice<int8_t>({1, DST_XUNIT * QUANT_INFO_BYTES}));
auto success = backend()->onAcquireBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
}
mBlockNum = 1;
mIm2ColBasedInt8 = true;
mUseBatchQuan = false;
}
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, gcore, core);
// input scale buffer
const int threads = static_cast<CPUBackend*>(backend())->threadNumber();
// Im2col info
int im2colBytes = 1;
const int L2Size = 2048;
int tileLimitByC = UP_DIV(L2Size, mIm2ColParamter.kernelCountUnit * SRC_UNIT);
if (mIm2ColBasedInt8 == false) {
im2colBytes = gcore->bytes;
tileLimitByC = 1;
}
int ic = inputs[0]->channel();
int tileLimit = 0;
int outC = output->channel();
int outC4 = UP_DIV(outC, gcore->pack);
auto kernelCountUnit = mIm2ColParamter.kernelCountUnit;
mSplitByOc = true;
// flop and io
float flop = gcore->bytes * planeSize * (ROUND_UP(output->channel(), gcore->pack) * kernelCountUnit * SRC_UNIT / 1024.0 / 1024.0 / 1024.0);
float ios = (((CPUBackend*)backend())->getTensorSize(outputs[0], true) + ((CPUBackend*)backend())->getTensorSize(inputs[0], true) + ((CPUBackend*)backend())->getTensorSize(mResourceInt8->mWeightInt8.get()) * weightBytes) / (1024.0 * 1024.0 * 1024.0);
if (threads < planeSize) { // Thread split by output nhw.
tileLimit = ALIMIN(tileLimitByC, UP_DIV(planeSize, threads));
mIm2ColCount = UP_DIV(tileLimit, DST_XUNIT);
auto DynamicDestUnit = DST_XUNIT * mIm2ColCount;
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
if (mTileCount > threads) {
mSplitByOc = false;
}
}
if (mSplitByOc) {
tileLimit = ALIMIN(tileLimitByC, planeSize);
mIm2ColCount = UP_DIV(tileLimit, DST_XUNIT);
auto DynamicDestUnit = DST_XUNIT * mIm2ColCount;
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
auto ocPerThread = UP_DIV(outC4, threads);
auto threadNeed = UP_DIV(outC4, ocPerThread);
int totalWork = outC4;
int part = 1;
if (UNIT > gcore->pack) { // AVX512:UNIT=64,pack=16
MNN_ASSERT(UNIT % gcore->pack == 0);
int ocDivUnit = UP_DIV(outC4 * gcore->pack, UNIT);
ocPerThread = UP_DIV(ocDivUnit, threads);
threadNeed = UP_DIV(ocDivUnit, ocPerThread);
totalWork = ocDivUnit;
part = UNIT / gcore->pack;
}
mThreadNums = ALIMIN(threads, threadNeed);
mDivides.resize(threads+1);
mDivides[0] = 0;
static_cast<CPUBackend *>(backend())->computeDivideSizes(totalWork, mDivides.data() + 1, flop / ios);
for (int i = 0; i < mDivides.size(); ++i) {
mDivides[i] *= part;
}
}
if (!mSplitByOc) {
mThreadNums = ALIMIN(threads, mTileCount);
mDivides.resize(threads+1);
mDivides[0] = 0;
static_cast<CPUBackend *>(backend())->computeDivideSizes(mTileCount, mDivides.data() + 1, flop / ios);
}
int ocUp4 = ROUND_UP(outC, gcore->pack);
int k = mThreadNums;
int workPT = DST_XUNIT * mIm2ColCount;
if (mSplitByOc) {
k = 1; // Use one thread to finish im2col.
workPT = mTileCount * DST_XUNIT * mIm2ColCount;
}
auto bufferAlloc = static_cast<CPUBackend*>(backend())->getBufferAllocator();
auto blitInfoSize = ConvolutionTiledExecutor::computeBlitInfoSize(workPT, mIm2ColParamter.ow, mIm2ColParamter.kernelX * mIm2ColParamter.kernelY, k);
mBlitInfoStride = blitInfoSize.second;
mBlitInfo = bufferAlloc->alloc(blitInfoSize.first);
const int unitColBufferSize = kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
const int colBufferSize = unitColBufferSize * mIm2ColCount;
if (!mSplitByOc) {
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({threads, colBufferSize * im2colBytes}));
mTempSrcSum = bufferAlloc->alloc(threads * mBlockNum * DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES);
} else {
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({mTileCount, colBufferSize * im2colBytes}));
mTempSrcSum = bufferAlloc->alloc(mTileCount * mBlockNum * DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES);
}
auto success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (!success || mBlitInfo.invalid() || mTempSrcSum.invalid()) {
return OUT_OF_MEMORY;
}
if (false == mResourceInt8->mDynamicQuant) {
bufferAlloc->free(mBlitInfo);
bufferAlloc->free(mTempSrcSum);
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
if (mBatchQuantInfo.get()) {
backend()->onReleaseBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
#ifdef MNN_LOW_MEMORY
{ // Dynamic Quant kernels
mGemmKernel = core->Int8GemmKernel;
if (mResourceInt8->mActBits == 4) {
mGemmKernel = core->Int8GemmKernel_W4;
}
mQuantFunc = core->MNNFloat2Int8;
if (gcore->bytes == 2 && gcore->pack == 8) {
mGemmKernel = core->MNNGemmInt8AddBiasScale_Unit_FP16;
if (mResourceInt8->mActBits == 4) {
mGemmKernel = core->MNNGemmInt8AddBiasScale_w4_Unit_FP16;
}
mQuantFunc = core->DynamicQuanInput_ARM82;
mQuantAndReorderFunc = core->DynamicQuanInputAndReorder_ARM82;
}
// A axisSum kernel
mSumByAxisLFunc = gcore->MNNSumByAxisLForMatmul_A;
}
mInputBlockNum = (option == 2) ? mBlockNum : 1;
bool symmetricQuant = (option != 2 && mUseBatchQuan) ? true : false;
int size = 0;
if (!mUseBatchQuan) { // single quant
if (mSplitByOc) {
size = 2 * mInputBlockNum * ALIMIN(DST_XUNIT, planeSize) * QUANT_INFO_BYTES;
} else {
size = 2 * mInputBlockNum * mIm2ColCount * DST_XUNIT * QUANT_INFO_BYTES;
}
}
if (mUseBatchQuan) {
if (mIm2ColBasedInt8) {
size = 2 * mInputBlockNum * inputPlane * QUANT_INFO_BYTES;
} else if (!mSplitByOc){ // only threads buffer needed by this case
size = 2 * mInputBlockNum * mIm2ColCount * DST_XUNIT * QUANT_INFO_BYTES;
} else {
size = 2 * mInputBlockNum * planeSize * QUANT_INFO_BYTES;
}
}
if (symmetricQuant) { // symmetric quant
size /= 2;
}
if (!mIm2ColBasedInt8 && !mSplitByOc) {
mBatchQuantInfo.reset(Tensor::createDevice<int8_t>({threads, size}));
} else {
mBatchQuantInfo.reset(Tensor::createDevice<int8_t>({1, size})); // keep dimensions=2!
}
success &= backend()->onAcquireBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
// Dynamic quant.
// set im2col tensor info
if (mIm2ColBasedInt8) {
mQuantInput.reset((Tensor::createDevice<int8_t>({batch, mIm2ColParamter.ih, mIm2ColParamter.iw, ROUND_UP(inC, gcore->pack)})));
} else if (!mSplitByOc){
mQuantInput.reset((Tensor::createDevice<int8_t>({threads, colBufferSize * 1})));
} else {
mQuantInput.reset((Tensor::createDevice<int8_t>({mTileCount, colBufferSize * 1})));
}
success &= backend()->onAcquireBuffer(mQuantInput.get(), Backend::DYNAMIC);
// set compute buffer
int tempSize = threads * 2 * mInputBlockNum * inputPlane;
if (!mIm2ColBasedInt8) {
if (!mSplitByOc) {
tempSize = threads * 2 * mInputBlockNum * DST_XUNIT * mIm2ColCount;
} else {
tempSize = threads * 2 * mInputBlockNum * ROUND_UP(planeSize, DST_XUNIT);
}
}
if (symmetricQuant) { // symmetric batch quant.
tempSize /= 2;
}
mSizeInputBlockQuant = tempSize / threads;
mTempMaxMinValueBuffer = bufferAlloc->alloc(tempSize * gcore->bytes);
mQScaleZero = bufferAlloc->alloc(tempSize * QUANT_INFO_BYTES);
if (mQScaleZero.invalid()) {
return OUT_OF_MEMORY;
}
mToFuseInputbias2Bias = (!mUseBatchQuan && option != 2) ? true : false;
if (mToFuseInputbias2Bias) { // input data has only one bias&scale
if (mIm2ColBasedInt8) {
mBiasBufferFusedInputzero = bufferAlloc->alloc(ocUp4 * QUANT_INFO_BYTES);
} else {
mBiasBufferFusedInputzero = bufferAlloc->alloc(threads *ocUp4 * QUANT_INFO_BYTES);
}
if (mBiasBufferFusedInputzero.invalid()) {
return OUT_OF_MEMORY;
}
}
mAccumBuffer.reset(Tensor::createDevice<int32_t>({threads, DST_XUNIT * ALIMAX(UNIT, gcore->pack)}));
success &= backend()->onAcquireBuffer(mAccumBuffer.get(), Backend::DYNAMIC);
if (mBlockNum > 1 && kernelCount > 1) {
if (mSplitByOc) {
mReorderBuffer = bufferAlloc->alloc(UP_DIV(planeSize, DST_XUNIT) * unitColBufferSize);
} else {
mReorderBuffer = bufferAlloc->alloc(threads * colBufferSize);
}
if (mReorderBuffer.invalid()) {
return OUT_OF_MEMORY;
}
}
if (!success || mTempMaxMinValueBuffer.invalid()) {
return OUT_OF_MEMORY;
}
bufferAlloc->free(mBlitInfo);
bufferAlloc->free(mTempSrcSum);
bufferAlloc->free(mTempMaxMinValueBuffer);
bufferAlloc->free(mQScaleZero);
if (mBlockNum >1 && kernelCount > 1) {
bufferAlloc->free(mReorderBuffer);
}
if (mToFuseInputbias2Bias) {
bufferAlloc->free(mBiasBufferFusedInputzero);
}
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mBatchQuantInfo.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mQuantInput.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mAccumBuffer.get(), Backend::DYNAMIC);
#endif
return NO_ERROR;
}
ErrorCode DenseConvInt8TiledExecutor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend())->functions();
auto dynamicOption = static_cast<CPUBackend*>(backend())->getRuntime()->hint().dynamicQuantOption;
#ifdef MNN_KLEIDIAI_ENABLED
KleidiAI& kai = KleidiAI::getInstance();
if(mResourceInt8->mDynamicQuant && mResourceInt8->mActBits == 4 && kai.canAccelerate(mAccelType)) {
MNN_ASSERT(kai.isLoaded(mAccelType));
const size_t m = input->batch(); //lhs vector number.
const size_t n = output->channel(); //rhs vector number.
const size_t k = input->channel(); //vector size.
const size_t blkSize = mBlockNum == 1 ? 0 : k / mBlockNum;
bool bHalf = kai.isHalf();
size_t elementSize = bHalf ? sizeof(__fp16) : sizeof(float);
size_t lhsPackedSize = kai.getLhsQuantedPackedSize(mAccelType, m, k, blkSize);
auto lhs = input->host<uint8_t>();
auto lhsPacked = mTempIm2ColBuffer->host<int8_t>();
auto rhsPacked = mResourceInt8->mWeightInt8->host<uint8_t>();
auto dst = output->host<uint8_t>();
uint8_t *linearLhs, *linearDst;
if(m > 1 && !kai.isLinear()) {
linearLhs = (uint8_t *)lhsPacked + lhsPackedSize;
linearDst = linearLhs;
} else {
linearLhs = lhs;
linearDst = dst;
}
int threadNum = static_cast<CPUBackend*>(backend())->threadNumber();
int threadNeed, vecPerThread;
//Dynamic quant pack lhs.
if(m == 1) {
kai.runLhsQuantPack(mAccelType, 1, k, blkSize, 1, linearLhs, lhsPacked);
} else {
if(!kai.isLinear()) {
if(bHalf) {
KleidiAIUtil::transferNC4HW4ToNCHW((__fp16 *)lhs, (__fp16 *)linearLhs, m, k);
} else {
KleidiAIUtil::transferNC4HW4ToNCHW((float *)lhs, (float *)linearLhs, m, k);
}
}
vecPerThread = kai.getVecNumPerThread(m, threadNum, kai.getMr(mAccelType, m));
threadNeed = m % vecPerThread == 0 ? m / vecPerThread : (m / vecPerThread + 1);
size_t srcStride = vecPerThread * k * elementSize;
auto BatchDynamicQuant = [=, &kai](int tId) {
auto threadSrc = linearLhs + tId * srcStride;
auto threadDst = lhsPacked + kai.getLhsQuantedPackedOffset(mAccelType, m, tId * vecPerThread, k, blkSize);
int vecNum = (tId == threadNeed - 1) ? (m - vecPerThread * tId) : vecPerThread; //Last threadN may less than vecPerThread.
kai.runLhsQuantPack(mAccelType, vecNum, k, blkSize, kai.getMr(mAccelType, m), threadSrc, threadDst);
};
MNN_CONCURRENCY_BEGIN(tId, threadNeed) {
BatchDynamicQuant((int)tId);
}
MNN_CONCURRENCY_END();
}
//Run matmul.
if(kai.bSupportSme2() && mAccelType == KleidiAI::AccelType::QI4_SYM_CHNLQT) {
//SME prefer running on single thread to obtain better performance/power consumption ratio.
threadNum = 1;
}
vecPerThread = kai.getVecNumPerThread(n, threadNum, kai.getNStep(mAccelType));
threadNeed = n % vecPerThread == 0 ? n / vecPerThread : (n / vecPerThread + 1);
auto ThreadFunction = [=, &kai](int tId) {
auto threadRhsPacked = rhsPacked + kai.getRhsPackedOffset(mAccelType, tId * vecPerThread, k, blkSize);
auto threadDst = linearDst + kai.getDstOffset(0, tId * vecPerThread, n, elementSize);
int vecNum = (tId == threadNeed - 1) ? (n - vecPerThread * tId) : vecPerThread; //Last threadN may less than vecPerThread.
float scalarMax = bHalf ? FLT16_MAX : FLT_MAX;
kai.runMatmul(mAccelType, m, vecNum, k, blkSize, lhsPacked, threadRhsPacked, threadDst, n * elementSize, elementSize, scalarMax, -scalarMax);
};
MNN_CONCURRENCY_BEGIN(tId, threadNeed) {
ThreadFunction((int)tId);
}
MNN_CONCURRENCY_END();
if(m > 1 && !kai.isLinear()) {
if(bHalf) {
KleidiAIUtil::transferNCHWToNC4HW4((__fp16 *)linearDst, (__fp16 *)dst, m, n);
} else {
KleidiAIUtil::transferNCHWToNC4HW4((float *)linearDst, (float *)dst, m, n);
}
}
return NO_ERROR;
}
#endif
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
auto blitProc = core->MNNPackC4Int8ForMatMul_A;
const int plane = output->batch() * mIm2ColParamter.oh * mIm2ColParamter.ow;
const int batch = input->batch();
const int PackUnit = gcore->pack;
const int dstZStep = plane * PackUnit;
const int ocDiv4 = UP_DIV(output->channel(), PackUnit);
const int ocUp4 = ROUND_UP(output->channel(), PackUnit);
const auto kernelCountUnit = mIm2ColParamter.kernelCountUnit;
const auto unitColBufferSize = kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
const auto colBufferSize = unitColBufferSize * mIm2ColCount;
const int dstBytes = static_cast<CPUBackend*>(backend())->getBytes(backend(), output);
const int blockL = kernelCountUnit / mBlockNum; // source depthQuad for each block.
const int kxky = mIm2ColParamter.kernelX * mIm2ColParamter.kernelY;
const int blocklu = blockL / kxky; // UP_DIV(ic,src_unit) per block
float weightBytes = 1.f;
int weightStepY = weightBytes * (UNIT * SRC_UNIT);
int inputPlane = batch * input->width() * input->height();
auto im2colPtr = mTempIm2ColBuffer->host<int8_t>();
if (SRC_UNIT > PackUnit) {
memset(im2colPtr, 0, mTempIm2ColBuffer->size());
}
const auto weightDataPtr = mResourceInt8->mWeightInt8->host<int8_t>();
auto srcKernelSumPtr = (int8_t*)mTempSrcSum.ptr();
auto im2colSrc = input->host<uint8_t>();
auto outputDataPtr = output->host<int8_t>();
uint8_t* biasPtr = nullptr;
int32_t inputZeroPoint = 0;
int im2colBytes = mIm2ColBasedInt8 == true ? 1 : gcore->bytes;
if (nullptr != mMutableResource.get()) {
biasPtr = mMutableResource->mBiasFloat->host<uint8_t>();
inputZeroPoint = mMutableResource->mInputZeroPoint;
if (mBatchQuantInfo.get()) {
float scalein = TensorUtils::getQuantInfo(inputs[0])[0];
float scaleou = TensorUtils::getQuantInfo(outputs[0])[0];
auto scaleX = scalein / scaleou;
for (int i = 0; i < DST_XUNIT; ++i) {
mBatchQuantInfo->host<float>()[i] = scaleX;
}
}
}
#ifdef MNN_LOW_MEMORY
auto BatchAsyDynamicQuant = [&](uint8_t* floatPtr, int32_t& inputZero, uint8_t* inputDequantScale, int LDiv4, int eCount, int innerSide, int32_t availableThreads, int8_t* dstInt8, uint8_t* inputDequantBias, int tId) {
// if mIm2ColBasedInt8=false, input shape: [kernelsize,mBlockNum,blocklu,EP,LP]
// if mIm2ColBasedInt8=true, input shape: [ic/pack,EP,pack]
auto scalePtr = (float*)inputDequantScale;
auto zeroPtr = (float*)inputDequantBias;
int scaleCount = mSizeInputBlockQuant;
int kernelsize = 1;
if (!mIm2ColBasedInt8) {
kernelsize = kxky;
}
auto minPtr = mTempMaxMinValueBuffer.ptr() + tId * scaleCount * gcore->bytes;
auto maxPtr = mTempMaxMinValueBuffer.ptr() + tId * scaleCount * gcore->bytes + (scaleCount / 2) * gcore->bytes;
auto qscale = (float*)(mQScaleZero.ptr() + tId * scaleCount * QUANT_INFO_BYTES);
auto qbias = (float*)(mQScaleZero.ptr() + tId * scaleCount * QUANT_INFO_BYTES + (scaleCount / 2) * QUANT_INFO_BYTES);
size_t info[9] = {(size_t)mInputBlockNum, (size_t)eCount, (size_t)innerSide, (size_t)DST_XUNIT, (size_t)SRC_UNIT, (size_t)kernelsize, (size_t)blocklu, 0, 0};
if (mIm2ColBasedInt8) {
info[6] = LDiv4 / mInputBlockNum;
}
if (mToFuseInputbias2Bias) {
info[7] = 1;
}
if (mIm2ColParamter.padX > 0 || mIm2ColParamter.padY > 0) {
info[8] = 1;
}
// scale&bias:float32
gcore->MNNAsyQuantInfo(scalePtr, zeroPtr, qscale, qbias, (float*)minPtr, (float*)maxPtr, (float*)floatPtr, info);
// quant: float->int8_t
if (!mToFuseInputbias2Bias) {
gcore->MNNAsyQuantFunc(dstInt8, (float*)floatPtr, qscale, qbias, info);
} else {
auto sizeDiv4 = UP_DIV(eCount * LDiv4 * innerSide, PackUnit);
mQuantFunc((float*)floatPtr, dstInt8, sizeDiv4, qscale, -128, 127, qbias, 0);
}
if (mToFuseInputbias2Bias) { // Decode
inputZero = qbias[0];
auto updatedBiasPtr = (float*)(mBiasBufferFusedInputzero.ptr() + tId * ocUp4 * QUANT_INFO_BYTES);
auto matmulBiasPtr = mResourceInt8->mOriginBias->host<float>();
auto weightKernelSum = mResourceInt8->mWeightKernelSum->host<float>();
auto zero_ = -inputZero * scalePtr[0];
gcore->MNNDynamicUpdateConvBiasScale(updatedBiasPtr, matmulBiasPtr, weightKernelSum, &zero_, UP_DIV(ocUp4, 4));
biasPtr = (uint8_t*)updatedBiasPtr;
auto unitsize = mBatchQuantInfo->length(1) / (2 * QUANT_INFO_BYTES);
auto inputScale = scalePtr[0];
for (int i = 0; i < unitsize; ++i) {
((float*)inputDequantScale)[i] = inputScale;
}
}
};
auto BatchSymDynamicQuant = [&](uint8_t* floatPtr, int32_t& inputZero, uint8_t* inputDequantScale, int LU, int EP, int LP, int32_t availableThreads, int8_t* dstInt8, int tId) {
auto quantPtr = mQScaleZero.ptr() + tId * mSizeInputBlockQuant * QUANT_INFO_BYTES;
auto maxPtr = mTempMaxMinValueBuffer.ptr() + tId * mSizeInputBlockQuant * gcore->bytes;
// compute sum and absmax
int divlu = UP_DIV(LU, availableThreads);
MNN_CONCURRENCY_BEGIN (tIdx, ALIMIN(availableThreads, UP_DIV(LU, divlu))) {
auto exeLu = ALIMIN(divlu, LU - tIdx * divlu);
auto batchMax = reinterpret_cast<float*>(maxPtr + tIdx * EP * gcore->bytes);
auto ptr_ = reinterpret_cast<float*>(floatPtr + tIdx * divlu * gcore->bytes * EP * LP);
gcore->MNNAbsMax((float*)ptr_, batchMax, exeLu, EP, LP);
} MNN_CONCURRENCY_END();
// Compute quant scale
gcore->MNNQuantScale((float*)maxPtr, (float*)quantPtr, (float*)inputDequantScale, availableThreads, EP);
// quant
auto scale_ptr = reinterpret_cast<float*>(quantPtr);
gcore->MNNDynamicQuant((float*)floatPtr, dstInt8, scale_ptr, LU, EP, LP, nullptr);
inputZero = 0;
};
if (mResourceInt8->mDynamicQuant) {
biasPtr = mResourceInt8->mOriginBias->host<uint8_t>();
}
if (mIm2ColBasedInt8 && mResourceInt8->mDynamicQuant) {
int icDiv4 = UP_DIV(input->channel(), PackUnit);
if (mUseBatchQuan) {
int availthreads = (icDiv4 > mThreadNums && inputPlane > 255 ) ? mThreadNums : 1;
if (dynamicOption != 2) {
BatchSymDynamicQuant(input->host<uint8_t>(), inputZeroPoint, mBatchQuantInfo->host<uint8_t>(), icDiv4, inputPlane, PackUnit, availthreads, mQuantInput->host<int8_t>(), 0);
} else {
BatchAsyDynamicQuant(input->host<uint8_t>(), inputZeroPoint, mBatchQuantInfo->host<uint8_t>(), icDiv4, inputPlane, PackUnit, availthreads, mQuantInput->host<int8_t>(), mBatchQuantInfo->host<uint8_t>() + mBatchQuantInfo->stride(0) / 2, 0);
}
} else {
BatchAsyDynamicQuant(input->host<uint8_t>(), inputZeroPoint, mBatchQuantInfo->host<uint8_t>(), icDiv4, inputPlane, PackUnit, 1, mQuantInput->host<int8_t>(), mBatchQuantInfo->host<uint8_t>() + mBatchQuantInfo->stride(0) / 2, 0);
}
im2colSrc = mQuantInput->host<uint8_t>();
}
#endif
if (mResourceInt8->mActBits == 4) {
weightBytes = 0.5;
weightStepY /= 2;
}
int blockunit = ocUp4 * 2 * QUANT_INFO_BYTES + blockL * weightStepY * UP_DIV(output->channel(), UNIT);
auto inputchannel = input->channel();
SumByAxisParams sumParams;
sumParams.oneScale = (mUseBatchQuan || dynamicOption == 2) ? 0 : 1;
sumParams.SRC_UNIT = SRC_UNIT;
sumParams.blockNum = mBlockNum;
sumParams.DST_XUNIT = DST_XUNIT;
sumParams.unitColBufferSize = unitColBufferSize;
sumParams.kernelCountUnitDouble = kernelCountUnit;
sumParams.valid = inputchannel % SRC_UNIT;
sumParams.kernelxy = kxky;
sumParams.LU = UP_DIV(inputchannel, SRC_UNIT);
sumParams.inputBlock = (mInputBlockNum > 1) ? 1 : 0;
auto tileSplitFunction = [&](int tId, int eStartIndex, int eEndIndex, int estep) {
auto ocDivThread = ocDiv4;
float* reluPtr = mResourceInt8->mReluThreshold.data();
float* accumbuff = nullptr;
uint8_t* inputScale = nullptr;
uint8_t* inputBias = nullptr;
uint8_t* ptrInputScale = nullptr;
uint8_t* ptrInputBias = nullptr;
if (mBatchQuantInfo.get()) {
if (mIm2ColBasedInt8) {
inputScale = mBatchQuantInfo->host<uint8_t>();
ptrInputScale = inputScale;
}
if (dynamicOption == 2 && mUseBatchQuan && mIm2ColBasedInt8) {
inputBias = inputScale + mBatchQuantInfo->stride(0) / 2;
ptrInputBias = inputBias;
}
}
if (mBlockNum > 1) {
accumbuff = reinterpret_cast<float*>(mAccumBuffer->host<int8_t>() + tId * mAccumBuffer->stride(0) * sizeof(int32_t));
}
float* ptrY = nullptr;
if ((dstBytes != 1)) {
ptrY = mResourceInt8->mWeightKernelSum->host<float>();
}
QuanPostTreatParameters quanParam;
quanParam.blockNum = mBlockNum;
quanParam.weightKernelSum = ptrY;
if (dstBytes != 1) {
quanParam.useInt8 = 0;
quanParam.fp32minmax = reluPtr;
} else {
quanParam.maxValue = mMutableResource->mClampMax;
if (mResourceInt8->mRelu) {
quanParam.minValue = mMutableResource->mOutputZeroPoint;
} else {
quanParam.minValue = mMutableResource->mClampMin;
}
}
auto weightPtrTid = weightDataPtr;
quanParam.biasFloat = reinterpret_cast<float*>(biasPtr);
auto im2colDstThread = im2colPtr + tId * mTempIm2ColBuffer->stride(0);
auto srcPtr = (int8_t const **)(mBlitInfo.ptr() + tId * mBlitInfoStride.first);
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
auto xKernelSumPtrTid = reinterpret_cast<float*>(srcKernelSumPtr + tId * mBlockNum * DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES);
int32_t info[5];
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
info[2] = static_cast<int32_t>(unitColBufferSize);
info[3] = mIm2ColParamter.strideX;
for (int tIndex = eStartIndex; tIndex < eEndIndex; tIndex += estep) {
const int xIndexStart = tIndex * DST_XUNIT * mIm2ColCount;
auto outputInTilePtr = outputDataPtr + xIndexStart * PackUnit * dstBytes;
int realDstCount = ALIMIN(plane - xIndexStart, DST_XUNIT * mIm2ColCount);
ptrInputScale = (mUseBatchQuan && mIm2ColBasedInt8) ? (inputScale + xIndexStart * mInputBlockNum * QUANT_INFO_BYTES) : inputScale;
ptrInputBias = (inputBias != nullptr) ? (inputBias + xIndexStart * mInputBlockNum * QUANT_INFO_BYTES) : inputBias;
// im2col
auto im2colDst = im2colDstThread;
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, xIndexStart, realDstCount, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
int number = res.first;
bool needZero = res.second;
if (needZero && mIm2ColBasedInt8) {
#ifdef MNN_USE_SSE
::memset(im2colDst, inputZeroPoint + 128, colBufferSize);
#else
::memset(im2colDst, inputZeroPoint, colBufferSize);
#endif
}
info[0] = number;
info[4] = realDstCount;
if (mIm2ColBasedInt8 && number > 0) {
blitProc(im2colDst, srcPtr, info, el);
}
#ifdef MNN_LOW_MEMORY
if (!mIm2ColBasedInt8) {
if (needZero) {
::memset(im2colDst, 0, mTempIm2ColBuffer->stride(0));
}
if (number > 0) {
if (SRC_UNIT > PackUnit && !needZero) {
memset(im2colDst, 0, mTempIm2ColBuffer->stride(0));
}
info[2] = realDstCount;
gcore->MNNGeneralIm2Col((float*)im2colDst, (float const**)srcPtr, info, el, SRC_UNIT, PackUnit); // im2colDst: [lu, realDstCount, lp]
}
ptrInputScale = mBatchQuantInfo->host<uint8_t>() + tId * mBatchQuantInfo->stride(0);
if (dynamicOption == 2) {
ptrInputBias = ptrInputScale + mBatchQuantInfo->stride(0) / 2;
BatchAsyDynamicQuant((uint8_t*)im2colDst, inputZeroPoint, ptrInputScale, kernelCountUnit, realDstCount, SRC_UNIT, 1, mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0), ptrInputBias, tId);
} else if (mUseBatchQuan) {
BatchSymDynamicQuant((uint8_t*)im2colDst, inputZeroPoint, ptrInputScale, kernelCountUnit, realDstCount, SRC_UNIT, 1, mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0), tId);
} else {
auto maxMinPtr = mTempMaxMinValueBuffer.ptr() + tId * 2 * gcore->bytes;
ptrInputBias = ptrInputScale + mBatchQuantInfo->stride(0) / 2;
BatchAsyDynamicQuant((uint8_t*)im2colDst, inputZeroPoint, ptrInputScale, kernelCountUnit, realDstCount, SRC_UNIT, 1, mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0), ptrInputBias, tId);
quanParam.biasFloat = (float*)(mBiasBufferFusedInputzero.ptr() + tId * ocUp4 * QUANT_INFO_BYTES);
}
im2colDst = mQuantInput->host<int8_t>() + tId * mQuantInput->stride(0);
}
if (mBlockNum > 1 && kxky > 1) {
auto eU = UP_DIV(realDstCount, DST_XUNIT); // eU <= mIm2ColCount
auto reorderBuffer = mReorderBuffer.ptr() + tId * colBufferSize;
for (int k = 0; k < eU; ++k) {
int inside = blocklu * SRC_UNIT * ALIMIN(realDstCount - k * DST_XUNIT, DST_XUNIT);
auto dstbuffer = reorderBuffer + k * unitColBufferSize;
auto srcbuffer = im2colDst + k * unitColBufferSize;
for (int i = 0; i < mBlockNum; ++i) {
for (int j = 0; j < kxky; ++j) {
memcpy(dstbuffer + i * kxky * inside + j * inside, srcbuffer + i * inside + j * mBlockNum * inside, inside);
}
}
}
im2colDst = (int8_t*)reorderBuffer;
}
#endif
if (mResourceInt8->mWeightAsymmetricQuant) {
MNN_ASSERT(mBatchQuantInfo.get() && mBatchQuantInfo->host<float>());
gcore->MNNSumByAxisLForMatmul_A(xKernelSumPtrTid, im2colDst, (float*)ptrInputScale, realDstCount, sumParams);
} else {
memset(xKernelSumPtrTid, 0, mBlockNum * DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES);
}
auto ptrX = xKernelSumPtrTid;
do {
int step = ALIMIN(DST_XUNIT, realDstCount);
quanParam.inputScale = (float*)ptrInputScale;
quanParam.inputBias = (float*)ptrInputBias;
if (mBlockNum > 1) {
memset(accumbuff, 0, UNIT * 4 * DST_XUNIT);
quanParam.accumBuffer = accumbuff;
}
quanParam.srcKernelSum = ptrX;
mGemmKernel(outputInTilePtr, im2colDst, weightPtrTid, blockL, dstZStep * dstBytes, ocDivThread, &quanParam, step);
ptrX += (step * mBlockNum);
realDstCount-=step;
outputInTilePtr += DST_XUNIT * PackUnit * dstBytes;
im2colDst += unitColBufferSize;
ptrInputScale = mUseBatchQuan ? (ptrInputScale + step * mInputBlockNum * QUANT_INFO_BYTES) : ptrInputScale;
ptrInputBias = (ptrInputBias != nullptr) ? (ptrInputBias + step * mInputBlockNum * QUANT_INFO_BYTES) : ptrInputBias;
} while(realDstCount > 0);
}
};
auto ocSplitFunction = [&](int threads) { // Thread split by OC
auto im2colDst = mTempIm2ColBuffer->host<int8_t>();
auto srcPtr = (int8_t const **)(mBlitInfo.ptr());
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
auto xKernelSumPtr = reinterpret_cast<float*>(mTempSrcSum.ptr());
auto eU = UP_DIV(plane, DST_XUNIT);
int32_t info[5];
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
info[2] = static_cast<int32_t>(unitColBufferSize);
info[3] = mIm2ColParamter.strideX;
float* reluPtr = mResourceInt8->mReluThreshold.data();
if (mIm2ColBasedInt8) { // im2col
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, 0, plane, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
int number = res.first;
bool needZero = res.second;
if (needZero) {
#ifdef MNN_USE_SSE
::memset(im2colDst, inputZeroPoint + 128, mTempIm2ColBuffer->size());
#else
::memset(im2colDst, inputZeroPoint, mTempIm2ColBuffer->size());
#endif
}
info[0] = number;
info[4] = plane;
if (number > 0) {
blitProc(im2colDst, srcPtr, info, el);
}
}
#ifdef MNN_LOW_MEMORY
if (false == mIm2ColBasedInt8) {
int realDstCount = plane;
int start = 0;
auto ptrInputscale = mBatchQuantInfo->host<uint8_t>();
auto ptrInputbias = ptrInputscale + mBatchQuantInfo->stride(0) / 2;
auto int8Ptr = mQuantInput->host<int8_t>();
int sizePacked = 0;
auto im2colDstTmp = im2colDst;
while (realDstCount > 0) {
int work = std::min(realDstCount, DST_XUNIT);
sizePacked += (work * SRC_UNIT * kernelCountUnit);
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, start, work, mIm2ColParamter, (uint8_t*)im2colSrc, im2colBytes);
int number = res.first;
bool needZero = res.second;
if (needZero) {
::memset(im2colDstTmp, 0, unitColBufferSize * gcore->bytes);
}
info[0] = number;
info[2] = work;
if (number > 0) { // im2col
gcore->MNNGeneralIm2Col((float*)im2colDstTmp, (float const**)srcPtr, info, el, SRC_UNIT, PackUnit); // im2colDst: [lu, realDstCount, lp]
}
if (mUseBatchQuan || dynamicOption == 2) {
if (dynamicOption == 2) {
BatchAsyDynamicQuant((uint8_t*)im2colDstTmp, inputZeroPoint, ptrInputscale, kernelCountUnit, work, SRC_UNIT, 1, int8Ptr, ptrInputbias, 0);
ptrInputbias += (mInputBlockNum * work * sizeof(int32_t));
} else {
BatchSymDynamicQuant((uint8_t*)im2colDstTmp, inputZeroPoint, ptrInputscale, kernelCountUnit, work, SRC_UNIT, 1, int8Ptr, 0);
}
ptrInputscale += (mInputBlockNum * work * sizeof(int32_t));
int8Ptr += unitColBufferSize;
}
realDstCount -= work;
start += work;
im2colDstTmp += (unitColBufferSize * gcore->bytes);
}
if (!mUseBatchQuan && dynamicOption != 2) {
BatchAsyDynamicQuant((uint8_t*)im2colDst, inputZeroPoint, ptrInputscale, kernelCountUnit, plane, SRC_UNIT, 1, mQuantInput->host<int8_t>(), ptrInputscale + plane * mInputBlockNum* QUANT_INFO_BYTES, 0);
}
im2colDst = mQuantInput->host<int8_t>();
}
if (mBlockNum > 1 && kxky > 1) {
for (int k = 0; k < eU; ++k) {
int inside = blocklu * SRC_UNIT * ALIMIN(DST_XUNIT, plane - k * DST_XUNIT);
auto dstbuffer = mReorderBuffer.ptr() + k * unitColBufferSize;
auto srcbuffer = im2colDst + k * unitColBufferSize;
for (int i = 0; i < mBlockNum; ++i) {
for (int j = 0; j < kxky; ++j) {
memcpy(dstbuffer + i * kxky * inside + j * inside, srcbuffer + i * inside + j * mBlockNum * inside, inside);
}
}
}
im2colDst = (int8_t*)mReorderBuffer.ptr();
}
#endif
if (mResourceInt8->mWeightAsymmetricQuant) {
MNN_ASSERT(mBatchQuantInfo.get() && mBatchQuantInfo->host<float>());
gcore->MNNSumByAxisLForMatmul_A(xKernelSumPtr, im2colDst, mBatchQuantInfo->host<float>(), plane, sumParams);
} else {
memset(xKernelSumPtr, 0, mTileCount * mBlockNum * DST_XUNIT * mIm2ColCount * QUANT_INFO_BYTES);
}
MNN_CONCURRENCY_BEGIN(tId, threads) {
int ocIndex = PackUnit * mDivides[tId];
auto ocDivThread = ALIMIN(mDivides[tId + 1] - mDivides[tId], ocDiv4 - mDivides[tId]);
if (ocIndex < ocUp4) {
auto im2colDstThread = im2colDst;
float* ptrY = nullptr;
if (dstBytes != 1) {
ptrY = mResourceInt8->mWeightKernelSum->host<float>() + (ocIndex / UNIT) * UNIT * mInputBlockNum;
}
QuanPostTreatParameters quanParam;
quanParam.blockNum = mBlockNum;
quanParam.weightKernelSum = ptrY;
quanParam.biasFloat = reinterpret_cast<float*>(biasPtr + ocIndex * 4);
if (dstBytes != 1) {
quanParam.useInt8 = 0;
quanParam.fp32minmax = reluPtr;
} else {
quanParam.maxValue = mMutableResource->mClampMax;
if (mResourceInt8->mRelu) {
quanParam.minValue = mMutableResource->mOutputZeroPoint;
} else {
quanParam.minValue = mMutableResource->mClampMin;
}
}
uint8_t* inputScale = nullptr; // input scale for batch dynamic quant.
uint8_t* inputBias = nullptr;
float* accumbuff = nullptr;
if (mBatchQuantInfo.get()) {
inputScale = mBatchQuantInfo->host<uint8_t>();
if (dynamicOption == 2) {
inputBias = inputScale + mInputBlockNum * plane * QUANT_INFO_BYTES;
}
}
if (mBlockNum > 1) {
accumbuff = reinterpret_cast<float*>(mAccumBuffer->host<int8_t>() + tId * mAccumBuffer->stride(0) * sizeof(int32_t));
}
auto outputInTilePtr = outputDataPtr + ocIndex * plane * dstBytes;
const auto weightPtrTid = weightDataPtr + static_cast<int32_t>(ocIndex * mBlockNum * blockL * SRC_UNIT * weightBytes + ocIndex * 2 * mBlockNum * QUANT_INFO_BYTES);
int realDstCount = plane;
auto ptrX = xKernelSumPtr;
do {
int step = ALIMIN(DST_XUNIT, realDstCount);
quanParam.inputScale = (float*)inputScale;
quanParam.inputBias = (float*)inputBias;
quanParam.srcKernelSum = ptrX;
if (mBlockNum > 1) {
memset(accumbuff, 0, UNIT * 4 * DST_XUNIT);
quanParam.accumBuffer = accumbuff;
}
mGemmKernel(outputInTilePtr, im2colDstThread, weightPtrTid, blockL, dstZStep * dstBytes, ocDivThread, &quanParam, step);
ptrX += (step * mBlockNum);
realDstCount-=step;
outputInTilePtr += DST_XUNIT * PackUnit * dstBytes;
im2colDstThread += unitColBufferSize;
inputScale = mUseBatchQuan ? (inputScale + mInputBlockNum * step * QUANT_INFO_BYTES) : inputScale;
inputBias = (inputBias != nullptr) ? (inputBias + mInputBlockNum * step * QUANT_INFO_BYTES) : inputBias;
} while(realDstCount > 0);
}
}
MNN_CONCURRENCY_END();
};
const int threads = static_cast<CPUBackend*>(backend())->threadNumber();
if (!mSplitByOc) {
MNN_CONCURRENCY_BEGIN(tId, threads) {
if (mDivides[tId + 1] - mDivides[tId] > 0) {
tileSplitFunction((int)tId, mDivides[tId], mDivides[tId + 1], 1);
}
}
MNN_CONCURRENCY_END();
} else {
ocSplitFunction(threads);
}
return NO_ERROR;
}
} // namespace MNN