source/backend/cpu/compute/ConvolutionFloatFactory.cpp (151 lines of code) (raw):

// // ConvolutionFloatFactory.cpp // MNN // // Created by MNN on 2018/07/16. // Copyright © 2018, Alibaba Group Holding Limited // #include "backend/cpu/compute/ConvolutionFloatFactory.h" #include "backend/cpu/CPUConvolutionDepthwise.hpp" #include "backend/cpu/compute/ConvOpt.h" #include "backend/cpu/compute/Convolution1x1Strassen.hpp" #include "backend/cpu/compute/ConvolutionGroup.hpp" #include "backend/cpu/compute/ConvolutionIntFactory.hpp" #include "backend/cpu/compute/ConvolutionWinogradBridge.hpp" #include "backend/cpu/compute/DenseConvolutionTiledExecutor.hpp" #ifdef MNN_USE_SPARSE_COMPUTE #include "backend/cpu/compute/SparseConvolutionTiledExecutor.hpp" #endif #include "core/Macro.h" #include "core/OpCommonUtils.hpp" #include "backend/cpu/OneDNNConvolution.hpp" #include "backend/cpu/compute/ConvInt8TiledExecutor.hpp" namespace MNN { static Execution* _createUnit(const Tensor* input, const Tensor* output, Backend* backend, const Op* op, const float* originWeight, size_t originWeightSize, const float* bias, size_t biasSize, std::shared_ptr<ConvolutionCommon::Int8Common> weightQuantInfo, bool supportSparse, bool lowMemory) { auto cpuBackend = (CPUBackend*)backend; auto conv2d = op->main_as_Convolution2D(); auto common = conv2d->common(); #ifdef MNN_USE_ONEDNN return OneDNN::createConvolution(common, backend, originWeight, originWeightSize, bias, biasSize); #endif #ifdef MNN_USE_SPARSE_COMPUTE if (conv2d->sparseParameter() && nullptr != weightQuantInfo.get()) { if (supportSparse && weightQuantInfo->quan->index() != nullptr) { return new SparseConvolutionTiledExecutor(common, backend, weightQuantInfo->quan, conv2d->sparseParameter(), bias, biasSize); } } #endif bool fastWay = common->kernelY() == 1 && common->kernelX() == 1 && output->width() == input->width() && output->height() == input->height() && common->strideX() == 1 && common->strideY() == 1; if (lowMemory && nullptr != weightQuantInfo.get() && originWeightSize == 0) { if (cpuBackend->memoryMode() == BackendConfig::Memory_Low) { return new DenseConvInt8TiledExecutor(backend, op, weightQuantInfo, true); } else { return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, weightQuantInfo); } } #ifndef MNN_LOW_MEMORY if (cpuBackend->memoryMode() == BackendConfig::Memory_Low) { return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, weightQuantInfo); } #endif if (fastWay && cpuBackend->functions()->matmulBytes == 0) { return new Convolution1x1Strassen(common, backend, originWeight, originWeightSize, bias, biasSize); } if (cpuBackend->getRuntime()->hint().winogradMemoryUsed == 0 || (!ConvolutionWinogradBridge::canUseWinograd(common))) { return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, nullptr); } PerfConfig convPerfconfig = DenseConvolutionTiledExecutor::bestTileConvolutionConfig(common, input, output, cpuBackend->threadNumber(), backend); auto winogradConfig = ConvolutionWinogradBridge::bestWinogradUnit(common, input, output, cpuBackend->threadNumber(), backend, convPerfconfig); if (winogradConfig.unit <= 1) { return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, nullptr); } return ConvolutionWinogradBridge::createWinogradImpl(common, input, output, backend, originWeight, originWeightSize, bias, biasSize, winogradConfig); } Execution* ConvolutionFloatFactory::create(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op, Backend* backend) { auto conv2d = op->main_as_Convolution2D(); if (inputs.size() > 1) { // Multi Input return new ConvolutionTiledExecutorMultiInput(conv2d->common(), backend); } #ifdef MNN_LOW_MEMORY bool lowMemory = static_cast<CPUBackend*>(backend)->memoryMode() == BackendConfig::Memory_Low; if (static_cast<CPUBackend*>(backend)->functions()->bytes == 2 && static_cast<CPUBackend*>(backend)->int8Functions()->MNNGemmInt8AddBiasScale_Unit_FP16 == nullptr) { // Fall back to fp32 return nullptr; } #else bool lowMemory = false; #endif #ifdef MNN_CPU_WEIGHT_DEQUANT_GEMM lowMemory = lowMemory || (static_cast<CPUBackend*>(backend)->memoryMode() != BackendConfig::Memory_High); #endif const float* originWeight = nullptr; const float* originBias = nullptr; int originWeightSize = 0; int originBiasSize = 0; std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon; std::unique_ptr<Tensor> externalWeightTensor, externalBiasTensor; bool supportSparse = false; auto core = static_cast<CPUBackend*>(backend)->functions(); int bytes = core->bytes; #ifdef MNN_USE_SPARSE_COMPUTE #ifdef MNN_USE_SSE const bool onlySSENotAVX = core->pack == 4; // no backend of only sse without avx2 or avx512 #else const bool onlySSENotAVX = false; #endif supportSparse = !onlySSENotAVX && bytes == 4; #endif if (nullptr != conv2d->quanParameter()) { bool forceFloat = false; if (!supportSparse && conv2d->quanParameter()->index() != nullptr) { // The weight is storage as float sparse, but the backend don't support sparse compute, expand it forceFloat = true; } quanCommon = ConvolutionCommon::load(op, backend, forceFloat, lowMemory); if (nullptr == quanCommon) { MNN_ERROR("Memory not Enough, can't extract IDST Convolution: %s \n", op->name()->c_str()); return nullptr; } if (conv2d->quanParameter()->has_scaleInt()) { if (bytes < 4) { // From BF16 / FP16 return nullptr; } return ConvolutionIntFactory::create(inputs[0], outputs[0], op, backend, quanCommon.get()); } // Back to float originWeight = quanCommon->weightFloat.get(); originWeightSize = quanCommon->weightFloat.size(); } else if (nullptr == conv2d->weight() || nullptr == conv2d->bias()) { MNN_ERROR("%s has no weight or bias. The model may be benchmark model, please revert the weight/bias firstly\n", op->name()->c_str()); return nullptr; } auto common = conv2d->common(); if (nullptr == originWeight && nullptr != op->main_as_Convolution2D()->weight()) { originWeight = op->main_as_Convolution2D()->weight()->data(); originWeightSize = op->main_as_Convolution2D()->weight()->size(); } if (nullptr == originBias && op->main_as_Convolution2D()->bias()) { originBias = op->main_as_Convolution2D()->bias()->data(); originBiasSize = op->main_as_Convolution2D()->bias()->size(); } int group = common->group(); if (common->inputCount() != inputs[0]->channel() && common->inputCount() > 0) { group = inputs[0]->channel()/ conv2d->common()->inputCount(); } MNN_ASSERT(group > 0); if (1 == group) { return _createUnit(inputs[0], outputs[0], backend, op, originWeight, originWeightSize, originBias, originBiasSize, quanCommon, supportSparse, lowMemory); } // TODO: Use Geometry to split // Split std::vector<std::shared_ptr<Execution>> subConvolution; auto groupOutputCount = common->outputCount() / group; auto groupWeightSize = originWeightSize / group; std::shared_ptr<Tensor> emptyInput(Tensor::createDevice<float>(inputs[0]->shape(), Tensor::CAFFE_C4)); std::shared_ptr<Tensor> emptyOutput(Tensor::createDevice<float>(outputs[0]->shape(), Tensor::CAFFE_C4)); emptyInput->setLength(1, inputs[0]->channel() / group); emptyOutput->setLength(1, outputs[0]->channel() / group); for (int i = 0; i < group; ++i) { auto newConvolution = _createUnit(emptyInput.get(), emptyOutput.get(), backend, op, originWeight + groupWeightSize * i, groupWeightSize, conv2d->bias()->data() + groupOutputCount * i, groupOutputCount, quanCommon, supportSparse, lowMemory); subConvolution.push_back(std::shared_ptr<Execution>(newConvolution)); } return new ConvolutionGroup(backend, subConvolution); } } // namespace MNN