source/backend/cpu/compute/ConvolutionFloatFactory.cpp (151 lines of code) (raw):
//
// ConvolutionFloatFactory.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/compute/ConvolutionFloatFactory.h"
#include "backend/cpu/CPUConvolutionDepthwise.hpp"
#include "backend/cpu/compute/ConvOpt.h"
#include "backend/cpu/compute/Convolution1x1Strassen.hpp"
#include "backend/cpu/compute/ConvolutionGroup.hpp"
#include "backend/cpu/compute/ConvolutionIntFactory.hpp"
#include "backend/cpu/compute/ConvolutionWinogradBridge.hpp"
#include "backend/cpu/compute/DenseConvolutionTiledExecutor.hpp"
#ifdef MNN_USE_SPARSE_COMPUTE
#include "backend/cpu/compute/SparseConvolutionTiledExecutor.hpp"
#endif
#include "core/Macro.h"
#include "core/OpCommonUtils.hpp"
#include "backend/cpu/OneDNNConvolution.hpp"
#include "backend/cpu/compute/ConvInt8TiledExecutor.hpp"
namespace MNN {
static Execution* _createUnit(const Tensor* input, const Tensor* output, Backend* backend,
const Op* op, const float* originWeight, size_t originWeightSize, const float* bias, size_t biasSize, std::shared_ptr<ConvolutionCommon::Int8Common> weightQuantInfo, bool supportSparse, bool lowMemory) {
auto cpuBackend = (CPUBackend*)backend;
auto conv2d = op->main_as_Convolution2D();
auto common = conv2d->common();
#ifdef MNN_USE_ONEDNN
return OneDNN::createConvolution(common, backend, originWeight, originWeightSize, bias, biasSize);
#endif
#ifdef MNN_USE_SPARSE_COMPUTE
if (conv2d->sparseParameter() && nullptr != weightQuantInfo.get()) {
if (supportSparse && weightQuantInfo->quan->index() != nullptr) {
return new SparseConvolutionTiledExecutor(common, backend, weightQuantInfo->quan,
conv2d->sparseParameter(), bias, biasSize);
}
}
#endif
bool fastWay = common->kernelY() == 1 && common->kernelX() == 1
&& output->width() == input->width() && output->height() == input->height()
&& common->strideX() == 1 && common->strideY() == 1;
if (lowMemory && nullptr != weightQuantInfo.get() && originWeightSize == 0) {
if (cpuBackend->memoryMode() == BackendConfig::Memory_Low) {
return new DenseConvInt8TiledExecutor(backend, op, weightQuantInfo, true);
} else {
return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, weightQuantInfo);
}
}
#ifndef MNN_LOW_MEMORY
if (cpuBackend->memoryMode() == BackendConfig::Memory_Low) {
return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, weightQuantInfo);
}
#endif
if (fastWay && cpuBackend->functions()->matmulBytes == 0) {
return new Convolution1x1Strassen(common, backend, originWeight, originWeightSize, bias, biasSize);
}
if (cpuBackend->getRuntime()->hint().winogradMemoryUsed == 0 || (!ConvolutionWinogradBridge::canUseWinograd(common))) {
return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, nullptr);
}
PerfConfig convPerfconfig = DenseConvolutionTiledExecutor::bestTileConvolutionConfig(common, input, output, cpuBackend->threadNumber(), backend);
auto winogradConfig = ConvolutionWinogradBridge::bestWinogradUnit(common, input, output, cpuBackend->threadNumber(), backend, convPerfconfig);
if (winogradConfig.unit <= 1) {
return new DenseConvolutionTiledExecutor(common, backend, originWeight, originWeightSize, bias, biasSize, nullptr);
}
return ConvolutionWinogradBridge::createWinogradImpl(common, input, output, backend, originWeight, originWeightSize, bias, biasSize,
winogradConfig);
}
Execution* ConvolutionFloatFactory::create(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) {
auto conv2d = op->main_as_Convolution2D();
if (inputs.size() > 1) {
// Multi Input
return new ConvolutionTiledExecutorMultiInput(conv2d->common(), backend);
}
#ifdef MNN_LOW_MEMORY
bool lowMemory = static_cast<CPUBackend*>(backend)->memoryMode() == BackendConfig::Memory_Low;
if (static_cast<CPUBackend*>(backend)->functions()->bytes == 2 && static_cast<CPUBackend*>(backend)->int8Functions()->MNNGemmInt8AddBiasScale_Unit_FP16 == nullptr) {
// Fall back to fp32
return nullptr;
}
#else
bool lowMemory = false;
#endif
#ifdef MNN_CPU_WEIGHT_DEQUANT_GEMM
lowMemory = lowMemory || (static_cast<CPUBackend*>(backend)->memoryMode() != BackendConfig::Memory_High);
#endif
const float* originWeight = nullptr;
const float* originBias = nullptr;
int originWeightSize = 0;
int originBiasSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
std::unique_ptr<Tensor> externalWeightTensor, externalBiasTensor;
bool supportSparse = false;
auto core = static_cast<CPUBackend*>(backend)->functions();
int bytes = core->bytes;
#ifdef MNN_USE_SPARSE_COMPUTE
#ifdef MNN_USE_SSE
const bool onlySSENotAVX = core->pack == 4; // no backend of only sse without avx2 or avx512
#else
const bool onlySSENotAVX = false;
#endif
supportSparse = !onlySSENotAVX && bytes == 4;
#endif
if (nullptr != conv2d->quanParameter()) {
bool forceFloat = false;
if (!supportSparse && conv2d->quanParameter()->index() != nullptr) {
// The weight is storage as float sparse, but the backend don't support sparse compute, expand it
forceFloat = true;
}
quanCommon = ConvolutionCommon::load(op, backend, forceFloat, lowMemory);
if (nullptr == quanCommon) {
MNN_ERROR("Memory not Enough, can't extract IDST Convolution: %s \n", op->name()->c_str());
return nullptr;
}
if (conv2d->quanParameter()->has_scaleInt()) {
if (bytes < 4) {
// From BF16 / FP16
return nullptr;
}
return ConvolutionIntFactory::create(inputs[0], outputs[0], op, backend, quanCommon.get());
}
// Back to float
originWeight = quanCommon->weightFloat.get();
originWeightSize = quanCommon->weightFloat.size();
} else if (nullptr == conv2d->weight() || nullptr == conv2d->bias()) {
MNN_ERROR("%s has no weight or bias. The model may be benchmark model, please revert the weight/bias firstly\n", op->name()->c_str());
return nullptr;
}
auto common = conv2d->common();
if (nullptr == originWeight && nullptr != op->main_as_Convolution2D()->weight()) {
originWeight = op->main_as_Convolution2D()->weight()->data();
originWeightSize = op->main_as_Convolution2D()->weight()->size();
}
if (nullptr == originBias && op->main_as_Convolution2D()->bias()) {
originBias = op->main_as_Convolution2D()->bias()->data();
originBiasSize = op->main_as_Convolution2D()->bias()->size();
}
int group = common->group();
if (common->inputCount() != inputs[0]->channel() && common->inputCount() > 0) {
group = inputs[0]->channel()/ conv2d->common()->inputCount();
}
MNN_ASSERT(group > 0);
if (1 == group) {
return _createUnit(inputs[0], outputs[0], backend, op, originWeight, originWeightSize,
originBias, originBiasSize, quanCommon, supportSparse, lowMemory);
}
// TODO: Use Geometry to split
// Split
std::vector<std::shared_ptr<Execution>> subConvolution;
auto groupOutputCount = common->outputCount() / group;
auto groupWeightSize = originWeightSize / group;
std::shared_ptr<Tensor> emptyInput(Tensor::createDevice<float>(inputs[0]->shape(), Tensor::CAFFE_C4));
std::shared_ptr<Tensor> emptyOutput(Tensor::createDevice<float>(outputs[0]->shape(), Tensor::CAFFE_C4));
emptyInput->setLength(1, inputs[0]->channel() / group);
emptyOutput->setLength(1, outputs[0]->channel() / group);
for (int i = 0; i < group; ++i) {
auto newConvolution =
_createUnit(emptyInput.get(), emptyOutput.get(), backend, op, originWeight + groupWeightSize * i,
groupWeightSize, conv2d->bias()->data() + groupOutputCount * i, groupOutputCount, quanCommon, supportSparse, lowMemory);
subConvolution.push_back(std::shared_ptr<Execution>(newConvolution));
}
return new ConvolutionGroup(backend, subConvolution);
}
} // namespace MNN