source/backend/cpu/compute/ConvolutionTiledExecutor.cpp (175 lines of code) (raw):
//
// ConvolutionTiledExecutor.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvolutionTiledExecutor.hpp"
#include <MNN/AutoTime.hpp>
#include "backend/cpu/CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "core/Concurrency.h"
#include "ConvOpt.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "math/Vec.hpp"
#include "core/BufferAllocator.hpp"
#include "core/MemoryFormater.h"
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
void ConvolutionTiledExecutor::initWeight(const float *source, float* cache, int depth, int outputCount, int kernelSize, const CoreFunctions* function) {
// Swap k, ic
int dims[4] = {
depth,
kernelSize,
kernelSize,
depth
};
for (int o=0; o<outputCount; ++o) {
auto dO = cache + o * depth * kernelSize;
auto sO = source + o * depth * kernelSize;
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
}
if (function->bytes < 4) {
// Lowp
function->MNNFp32ToLowp((float*)cache, (int16_t*)cache, outputCount * kernelSize * depth);
}
}
ConvolutionTiledExecutor::ConvolutionTiledExecutor(Backend* b, const float* bias, size_t biasSize)
: MNN::Execution(b) {
mResource.reset(new CPUConvolution::Resource);
mResource->backend = b;
mValid = mResource->copyBiasAlign(bias, biasSize);
if (!mValid) {
return;
}
}
ConvolutionTiledExecutor::ConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res, Backend* b) : mResource(res), Execution(b) {
}
ConvolutionTiledExecutor::~ConvolutionTiledExecutor() {
// Do nothing
}
bool ConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new ConvolutionTiledExecutor(mResource, bn);
return true;
}
ErrorCode ConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
return NO_ERROR;
}
ErrorCode ConvolutionTiledImpl::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
mFunction.second((int)tId);
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
std::pair<size_t, std::pair<size_t, size_t>> ConvolutionTiledExecutor::computeBlitInfoSize(int eP, int ow, int kernelSize, int threadNumber) {
auto maxLine = UP_DIV(eP, ow) + 1;
auto stride = kernelSize * maxLine * (4 * sizeof(int32_t) + sizeof(float *));
auto total = threadNumber * stride;
return std::make_pair(total, std::make_pair(stride, kernelSize * maxLine));
}
void ConvolutionTiledExecutor:: setIm2ColParameter(ConvolutionCommon::Im2ColParameter& dstIm2ColParamter, const Convolution2DCommon* convCommon, Tensor* input, Tensor* output, int padX, int padY, const CoreFunctions* floatCore, const CoreInt8Functions* int8Core, int pack, int32_t* int8GemmUnit) {
// FIXME: Set int8 and float's pack as diff
if (pack == 0) {
pack = floatCore->pack;
}
const auto kernelCount = convCommon->kernelX() * convCommon->kernelY();
dstIm2ColParamter.dilateX = convCommon->dilateX();
dstIm2ColParamter.dilateY = convCommon->dilateY();
dstIm2ColParamter.strideX = convCommon->strideX();
dstIm2ColParamter.strideY = convCommon->strideY();
dstIm2ColParamter.icDiv4 = UP_DIV(input->channel(), pack);;
dstIm2ColParamter.kernelX = convCommon->kernelX();
dstIm2ColParamter.kernelY = convCommon->kernelY();
dstIm2ColParamter.padX = padX;
dstIm2ColParamter.padY = padY;
dstIm2ColParamter.ih = input->height();
dstIm2ColParamter.iw = input->width();
dstIm2ColParamter.oh = output->height();
dstIm2ColParamter.ow = output->width();
dstIm2ColParamter.srcZStep = input->stride(1) * pack * input->batch();
dstIm2ColParamter.srcYStep = input->stride(2) * pack;
dstIm2ColParamter.packCUnit = pack;
dstIm2ColParamter.ic = input->channel();
dstIm2ColParamter.icup4 = input->channel(); // for float im2col.
if (nullptr != int8Core) {
// Compute Int8 Info and align ic
int UNIT, SRC_UNIT, DynamicDestUnit;
if (int8GemmUnit == nullptr) {
int8Core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DynamicDestUnit);
} else {
UNIT = int8GemmUnit[0];
SRC_UNIT = int8GemmUnit[1];
DynamicDestUnit = int8GemmUnit[2];
}
const auto srcCountUnit = UP_DIV(input->channel(), SRC_UNIT);
dstIm2ColParamter.kernelCountUnit = srcCountUnit * kernelCount;
dstIm2ColParamter.ic = srcCountUnit * SRC_UNIT;
if (SRC_UNIT > pack) { // Carefully change it.
dstIm2ColParamter.icup4 = ROUND_UP(input->channel(), pack);
} else {
dstIm2ColParamter.icup4 = ROUND_UP(input->channel(), SRC_UNIT);
}
}
if (dstIm2ColParamter.iw == 1 && dstIm2ColParamter.ow == 1 && dstIm2ColParamter.oh > 1 && dstIm2ColParamter.kernelX == 1 && dstIm2ColParamter.padX == 0) {
/* Convolution only work for Height. Swap x, y*/
dstIm2ColParamter.ow = dstIm2ColParamter.oh;
dstIm2ColParamter.oh = 1;
dstIm2ColParamter.padX = dstIm2ColParamter.padY;
dstIm2ColParamter.padY = 0;
dstIm2ColParamter.strideX = dstIm2ColParamter.strideY;
dstIm2ColParamter.strideY = 1; /* Don't need stride */
dstIm2ColParamter.iw = dstIm2ColParamter.ih;
dstIm2ColParamter.ih = 1;
dstIm2ColParamter.dilateX = dstIm2ColParamter.dilateY;
dstIm2ColParamter.dilateY = 1;
dstIm2ColParamter.kernelX = dstIm2ColParamter.kernelY;
dstIm2ColParamter.kernelY = 1;
}
}
std::pair<int, bool> ConvolutionTiledExecutor::turnIm2ColToBlitInfo(float const ** srcPtr, int32_t* el, int start, int xC, const ConvolutionCommon::Im2ColParameter& p, const uint8_t* srcOrigin, int bytes) {
/* Compute Pack position */
int oyBegin = start / p.ow;
int oxBegin = start % p.ow;
int oyEnd = (start + xC - 1) / p.ow;
int remain = xC;
int number = 0;
bool needZero = false;
int eStart = 0;
auto unit = p.packCUnit;
for (int oyb = oyBegin; oyb <= oyEnd; ++oyb) {
int step = std::min(p.ow - oxBegin, remain);
int oy = oyb % p.oh;
int ob = oyb / p.oh;
int sySta = oy * p.strideY - p.padY;
int kyStart = std::max(0, UP_DIV(-sySta, p.dilateY));
int kyEnd = std::min(p.kernelY, UP_DIV(p.ih - sySta, p.dilateY));
if (kyEnd - kyStart < p.kernelY) {
needZero = true;
}
auto srcStart = srcOrigin + ((ob * p.ih + sySta) * p.iw) * bytes * unit;
for (int ky = kyStart; ky < kyEnd; ++ky) {
auto lKYOffset = ky * p.kernelX * p.ic;
auto srcKy = srcStart + ky * p.dilateY * p.iw * bytes * unit;
for (int kx = 0; kx < p.kernelX; ++kx) {
/* Compute x range:*/
/* 0 <= (oxBegin + x) * strideX - padX + dilateX * kx < src_width*/
/* 0 <= x <= step*/
int end = std::min(
step, (p.iw - oxBegin * p.strideX - p.dilateX * kx + p.padX + p.strideX - 1) / p.strideX);
int sta = std::max(0, UP_DIV((p.padX - oxBegin * p.strideX - p.dilateX * kx), p.strideX));
if (end - sta < step) {
needZero = true;
}
if (end > sta) {
auto lOffset = lKYOffset + (kx * p.ic);
auto srcKx = srcKy + ((oxBegin + sta) * p.strideX + p.dilateX * kx - p.padX) * bytes * unit;
srcPtr[number] = (const float*)srcKx;
el[4 * number + 0] = end - sta;
el[4 * number + 1] = p.icup4;
el[4 * number + 2] = eStart + sta;
el[4 * number + 3] = lOffset;
number++;
}
}
}
oxBegin = 0;
remain -= step;
eStart += step;
}
return std::make_pair(number, needZero);
}
} // namespace MNN