source/backend/cpu/x86_x64/avx512/PackedFunction.cpp (1,010 lines of code) (raw):
//
// PackedFunction.cpp
// MNN
//
// Created by MNN on 2021/07/06.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <float.h>
#include <string.h>
#include <algorithm>
#include <limits>
#include <vector>
#include "FunctionSummary.hpp"
#include "core/Macro.h"
#include "backend/cpu/CPUPool.hpp"
#include "backend/cpu/BinaryUtils.hpp"
#include "Vec16.hpp"
#define PACK_UNIT 16
#define PACK PACK_UNIT
#define FLOAT float
using Vec = Vec16;
#include "backend/cpu/GridSampler.hpp"
void _AVX512_MNNCopyC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count) {
for (int i = 0; i < count; ++i) {
auto s = source + i * srcStride;
auto d = dest + i * dstStride;
_mm512_storeu_ps(d, _mm512_loadu_ps(s));
}
}
void _AVX512_MNNAddC4WithStride(const float* source, float* dest, size_t srcStride, size_t dstStride, size_t count) {
for (int i = 0; i < count; ++i) {
auto s = source + i * srcStride;
auto d = dest + i * dstStride;
_mm512_storeu_ps(d, _mm512_add_ps(_mm512_loadu_ps(s), _mm512_loadu_ps(d)));
}
}
void _AVX512_MNNCountMinMaxValue(const float* source, float* min, float* max, size_t size) {
int pack = 16;
int sizeDiv16 = size / pack;
__m512 minVal = _mm512_set1_ps(source[0]);
__m512 maxVal = minVal;
float maxArr[16], minArr[16];
for (int i = 0; i < sizeDiv16; ++i) {
auto src0 = source + pack * i;
__m512 vecA = _mm512_loadu_ps(src0);
auto maskMax = _mm512_cmp_ps_mask(vecA, maxVal, 14);
auto maskMin = _mm512_cmp_ps_mask(vecA, minVal, 1);
maxVal = _mm512_mask_blend_ps(maskMax, maxVal, vecA);
minVal = _mm512_mask_blend_ps(maskMin, minVal, vecA);
}
_mm512_storeu_ps(maxArr, maxVal);
_mm512_storeu_ps(minArr, minVal);
float max_ = maxArr[0], min_ = minArr[0];
for (int k = 1; k < pack; ++k) {
if (max_ < maxArr[k]) {
max_ = maxArr[k];
}
if (min_ > minArr[k]) {
min_ = minArr[k];
}
}
for (int i = pack * sizeDiv16; i < size; ++i) {
min_ = ALIMIN(min_, source[i]);
max_ = ALIMAX(max_, source[i]);
}
min[0] = min_;
max[0] = max_;
}
static void _AVX512_BatchMinMax(float* dstMin, float* dstMax, const float* source, size_t src_depth_quad, size_t realSize, int innerSide, size_t loadDstBuffer) {
// input: [src_depth_quad, realSize, pack]
// max,min shape: [realSize]
// avx512: core->pack = 16, SRC_UNIT=4
auto srcStep = realSize * innerSide;
if (innerSide == 4) {
float tempMax[4];
float tempMin[4];
for (int i = 0; i < realSize; ++i) {
auto min_ = _mm_loadu_ps(source + i * innerSide);
auto max_ = min_;
for (int c = 1; c < src_depth_quad; ++c) {
auto src0 = source + c * srcStep + i * innerSide;
auto vecA = _mm_loadu_ps(src0);
max_ = _mm_max_ps(max_, vecA);
min_ = _mm_min_ps(min_, vecA);
}
_mm_storeu_ps(tempMax, max_);
_mm_storeu_ps(tempMin, min_);
float max0 = tempMax[0];
float min0 = tempMin[0];
for (int k = 1; k < innerSide; ++k) {
if (max0 < tempMax[k]) {
max0 = tempMax[k];
}
if (min0 > tempMin[k]) {
min0 = tempMin[k];
}
}
if (loadDstBuffer) {
dstMax[i] = ALIMAX(max0, dstMax[i]);
dstMin[i] = ALIMIN(min0, dstMin[i]);
} else {
dstMax[i] = max0;
dstMin[i] = min0;
}
}
return;
}
if (innerSide == 16) {
float tmp[16];
for (int i = 0; i < realSize; ++i) {
auto min_ = _mm512_loadu_ps(source + i * innerSide);
auto max_ = min_;
auto src0 = source + i * innerSide;
for (int j = 1; j < src_depth_quad; ++j) {
auto vec = _mm512_loadu_ps(src0 + j * srcStep);
max_ = _mm512_max_ps(max_, vec);
min_ = _mm512_min_ps(min_, vec);
}
auto maxval = _mm512_reduce_max_ps(max_);
auto minval = _mm512_reduce_min_ps(min_);
dstMax[i] = maxval;
dstMin[i] = minval;
}
return;
}
MNN_ERROR("batch max/min error: x86_x64 avx512 don't suppport innerSide=%d yet\n", innerSide);
}
static void _AVX512_MNNAsyQuantInfo(float* scale, float* bias, float* qscale, float* qbias, float* dstMin, float* dstMax, const float* src, const size_t* info) {
auto blockNum = info[0];
auto plane = info[1]; // real area for data
auto innerSide = info[2]; // Innermost data layout, may come from backend's pack or gemmint8 units' SRC_UNIT
auto DST_XUNIT = info[3]; // AVX512: DST_XUNIT=4
auto kernelsize = info[5];
auto blockLU = info[6];
auto stride0 = blockNum * blockLU * plane * innerSide;
auto stride1 = blockLU * plane * innerSide;
if (info[7] == 1) { // scale&bias:[1]
float maxval, minval;
_AVX512_MNNCountMinMaxValue(src, &minval, &maxval, kernelsize * stride0);
if (info[8] == 1 && (maxval -minval) > 1e-7) {
if (minval > 0.f) {
minval = 0;
} else if (maxval < 0.f){
maxval = 0;
}
}
auto range = maxval - minval;
if (range <= 1e-7) {
scale[0] = 0.f;
qscale[0] = 0.f;
qbias[0] = 0.f;
bias[0] = maxval;
} else {
qscale[0] = 255.f / range;
scale[0] = range / 255.f;
qbias[0] = roundf(-minval * 255.f / range)- 128.f;
bias[0] = -qbias[0] * scale[0];
}
return;
}
// input : [kernelsize, blockNum, blockLU, plane, pack]
// dequant scale/bias : [EU, blockNum, step], step=ALIMIN(step, EP), EU=UP_DIV(plane, EP)
// quant scale/bias : [blockNum, plane]
// max,min : [blockNum, plane]
for (int i = 0; i < kernelsize; ++i) {
for (int j = 0; j < blockNum; ++j) {
_AVX512_BatchMinMax(dstMin + j * plane, dstMax + j * plane, src + i * stride0 + j * stride1, blockLU, plane, innerSide, i);
}
}
// scale,bias
auto realDstCount = plane;
auto thredshold4 = _mm_set1_ps(1e-6);
auto _255f = _mm_set1_ps(255.f);
auto _128f = _mm_set1_ps(128.f);
auto _0f = _mm_set1_ps(0.f);
for (int k = 0; k < blockNum; ++k) {
auto qind = k * plane;
auto realDstCount = plane;
auto scalePtr = scale + k * ALIMIN(plane, DST_XUNIT);
auto biasPtr = bias + k * ALIMIN(plane, DST_XUNIT);
while (realDstCount >= DST_XUNIT) {
auto step = DST_XUNIT; // ALIMIN(realDstCount, DST_XUNIT);
auto max4 = _mm_loadu_ps(dstMax + qind);
auto min4 = _mm_loadu_ps(dstMin + qind);
auto diff4 = _mm_sub_ps(max4, min4);
auto mask = _mm_cmplt_ps(diff4, thredshold4);
// scale,bias
auto quantScale4 = _mm_div_ps(_255f, diff4);
auto dequantScale4 = _mm_div_ps(diff4, _255f);
auto quantBias4 = _mm_sub_ps(_mm_div_ps(_mm_mul_ps(_mm_sub_ps(_0f, min4), _255f), diff4), _128f);
auto dequantBias4 = min4;
quantScale4 = _mm_blendv_ps(quantScale4, _0f, mask);
dequantScale4 = _mm_blendv_ps(dequantScale4, _0f, mask);
quantBias4 = _mm_round_ps(_mm_blendv_ps(quantBias4, _0f, mask), 0);
dequantBias4 = _mm_blendv_ps(dequantBias4, max4, mask);
_mm_storeu_ps(scalePtr, dequantScale4);
_mm_storeu_ps(biasPtr, dequantBias4);
_mm_storeu_ps(qscale + qind, quantScale4);
_mm_storeu_ps(qbias + qind, quantBias4);
realDstCount -= DST_XUNIT;
qind += DST_XUNIT;
scalePtr += (blockNum * DST_XUNIT);
biasPtr += (blockNum * DST_XUNIT);
}
if (realDstCount == 0) {
continue;
}
auto remainE = realDstCount;
auto stride0 = remainE * blockNum;
scalePtr = scale + (plane / DST_XUNIT) * blockNum * DST_XUNIT + k * remainE;
biasPtr = bias + (plane / DST_XUNIT) * blockNum * DST_XUNIT + k * remainE;
while (realDstCount) {
auto max_ = dstMax[qind];
auto min_ = dstMin[qind];
if (fabs(max_ - min_) < 1e-7) {
qscale[qind] = 0.f;
qbias[qind] = 0.f;
scalePtr[0] = 0.f;
biasPtr[0] = max_;
} else {
qscale[qind] = 255.f / (max_ - min_);
qbias[qind] = roundf(-min_ * 255.f / (max_ - min_)) - 128.0f;
scalePtr[0] = (max_ - min_) / 255.f;
biasPtr[0] = min_;
}
realDstCount -= 1;
qind += 1;
scalePtr += 1;
biasPtr += 1;
}
}
}
static void _AVX512_MNNAbsMaxFP32(const float* source, float* absmax, size_t src_depth_quad, size_t realSize, int pack) {
auto srcStep = realSize * pack;
if (pack == 4) {
__m128 mask = _mm_set1_ps(-0.0f);
float tmp[4];
for (int i = 0; i < realSize; ++i) {
__m128 absmax_ = _mm_loadu_ps(source + i * pack);
absmax_ = _mm_andnot_ps(mask, absmax_);
auto src0 = source + i * pack;
for (int j = 1; j < src_depth_quad; ++j) {
__m128 vec = _mm_loadu_ps(src0 + j * srcStep);
vec = _mm_andnot_ps(mask, vec);
absmax_ = _mm_max_ps(absmax_, vec);
}
_mm_storeu_ps(tmp, absmax_);
float res = tmp[0];
for (int j = 1; j < pack; ++j) {
res = ALIMAX(res, tmp[j]);
}
absmax[i] = res;
}
return;
}
if (pack == 16) {
float tmp[16];
for (int i = 0; i < realSize; ++i) {
auto absmax_ = _mm512_loadu_ps(source + i * pack);
absmax_ = _mm512_abs_ps(absmax_);
auto src0 = source + i * pack;
for (int j = 1; j < src_depth_quad; ++j) {
auto vec = _mm512_loadu_ps(src0 + j * srcStep);
vec = _mm512_abs_ps(vec);
absmax_ = _mm512_max_ps(absmax_, vec);
}
auto maxval = _mm512_reduce_max_ps(absmax_);
absmax[i] = maxval;
}
return;
}
MNN_ERROR("absMax error: x86_x64 avx512 don't suppport pack=%d yet\n", pack);
}
static void _AVX512_DynamicQuant(const float* src, int8_t* dst, const float* scale, size_t src_depth_quad, size_t realSize, int pack, const float* bias) {
auto srcStep = realSize * pack;
if (pack == 16) { // core->pack=16
auto offset = _mm512_set1_epi32(128);
int32_t tmp[16];
int32_t* dstPtr = reinterpret_cast<int32_t*>(dst);
for (int i = 0; i < src_depth_quad; ++i) {
int xcount = realSize;
auto srcPtr = src + i * srcStep;
auto scalePtr = scale;
auto biasPtr = bias;
while (xcount > 3) {
auto scale0 = _mm512_set1_ps(scalePtr[0]);
auto scale1 = _mm512_set1_ps(scalePtr[1]);
auto scale2 = _mm512_set1_ps(scalePtr[2]);
auto scale3 = _mm512_set1_ps(scalePtr[3]);
auto data0 = _mm512_loadu_ps(srcPtr);
auto data1 = _mm512_loadu_ps(srcPtr + pack);
auto data2 = _mm512_loadu_ps(srcPtr + 2 * pack);
auto data3 = _mm512_loadu_ps(srcPtr + 3 * pack);
data0 = _mm512_mul_ps(data0, scale0);
data1 = _mm512_mul_ps(data1, scale1);
data2 = _mm512_mul_ps(data2, scale2);
data3 = _mm512_mul_ps(data3, scale3);
if (bias) {
auto bias0 = _mm512_set1_ps(biasPtr[0]);
auto bias1 = _mm512_set1_ps(biasPtr[1]);
auto bias2 = _mm512_set1_ps(biasPtr[2]);
auto bias3 = _mm512_set1_ps(biasPtr[3]);
data0 = _mm512_add_ps(data0, bias0);
data1 = _mm512_add_ps(data1, bias1);
data2 = _mm512_add_ps(data2, bias2);
data3 = _mm512_add_ps(data3, bias3);
}
auto r0 = _mm512_cvt_roundps_epi32(data0, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
auto r1 = _mm512_cvt_roundps_epi32(data1, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
auto r2 = _mm512_cvt_roundps_epi32(data2, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
auto r3 = _mm512_cvt_roundps_epi32(data3, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
r0 = _mm512_add_epi32(r0, offset); // int32x16
r1 = _mm512_add_epi32(r1, offset); // int32x16
r2 = _mm512_add_epi32(r2, offset);
r3 = _mm512_add_epi32(r3, offset);
auto r0_16 = _mm512_packs_epi32(r0, r1); // 00001111 00001111 00001111 00001111
auto r1_16 = _mm512_packs_epi32(r2, r3); // 22223333 22223333 22223333 22223333
auto r0_8 = _mm512_packus_epi16(r0_16, r1_16); // 0000111122223333 0000111122223333 0000111122223333 0000111122223333
_mm512_storeu_si512(tmp, r0_8);
for (int k = 0; k < 4; ++k) {
dstPtr[k * 4 + 0] = tmp[k + 4 * 0];
dstPtr[k * 4 + 1] = tmp[k + 4 * 1];
dstPtr[k * 4 + 2] = tmp[k + 4 * 2];
dstPtr[k * 4 + 3] = tmp[k + 4 * 3];
}
// next round
xcount -= 4;
scalePtr += 4;
if (bias) {
biasPtr += 4;
}
srcPtr += (4 * pack);
dstPtr += 16;
}
while (xcount) {
auto scale0 = _mm512_set1_ps(scalePtr[0]);
auto data0 = _mm512_loadu_ps(srcPtr);
data0 = _mm512_mul_ps(data0, scale0);
if (bias) {
auto bias0 = _mm512_set1_ps(biasPtr[0]);
data0 = _mm512_add_ps(data0, bias0);
}
auto r0 = _mm512_cvt_roundps_epi32(data0, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
r0 = _mm512_add_epi32(r0, offset); // int32x16
auto r0_16 = _mm512_packs_epi32(r0, r0); // 00001111 00001111 00001111 00001111
auto r0_8 = _mm512_packus_epi16(r0_16, r0_16); // 0000111122223333 0000111122223333 0000111122223333 0000111122223333
_mm512_storeu_si512(tmp, r0_8);
dstPtr[0] = tmp[4 * 0];
dstPtr[1] = tmp[4 * 1];
dstPtr[2] = tmp[4 * 2];
dstPtr[3] = tmp[4 * 3];
// next round
xcount--;
scalePtr += 1;
if (bias) {
biasPtr += 1;
}
srcPtr += pack;
dstPtr += 4;
}
}
return;
}
if (pack == 4) { // LP=4;
auto offset = _mm_set1_epi32(128);
int32_t tmp[4];
int32_t* dstPtr = reinterpret_cast<int32_t*>(dst);
for (int i = 0; i < src_depth_quad; ++i) {
int xcount = realSize;
auto srcPtr = src + i * srcStep;
auto scalePtr = scale;
auto biasPtr = bias;
while (xcount > 3) {
auto scale0 = _mm_set1_ps(scalePtr[0]);
auto scale1 = _mm_set1_ps(scalePtr[1]);
auto scale2 = _mm_set1_ps(scalePtr[2]);
auto scale3 = _mm_set1_ps(scalePtr[3]);
auto data0 = _mm_loadu_ps(srcPtr);
auto data1 = _mm_loadu_ps(srcPtr + pack);
auto data2 = _mm_loadu_ps(srcPtr + 2 * pack);
auto data3 = _mm_loadu_ps(srcPtr + 3 * pack);
data0 = _mm_mul_ps(data0, scale0);
data1 = _mm_mul_ps(data1, scale1);
data2 = _mm_mul_ps(data2, scale2);
data3 = _mm_mul_ps(data3, scale3);
if (bias) {
auto bias0 = _mm_set1_ps(biasPtr[0]);
auto bias1 = _mm_set1_ps(biasPtr[1]);
auto bias2 = _mm_set1_ps(biasPtr[2]);
auto bias3 = _mm_set1_ps(biasPtr[3]);
data0 = _mm_add_ps(data0, bias0);
data1 = _mm_add_ps(data1, bias1);
data2 = _mm_add_ps(data2, bias2);
data3 = _mm_add_ps(data3, bias3);
}
data0 = _mm_round_ps(data0, 0);
data1 = _mm_round_ps(data1, 0);
data2 = _mm_round_ps(data2, 0);
data3 = _mm_round_ps(data3, 0);
auto r0 = _mm_cvtps_epi32(data0);
auto r1 = _mm_cvtps_epi32(data1);
auto r2 = _mm_cvtps_epi32(data2);
auto r3 = _mm_cvtps_epi32(data3);
r0 = _mm_add_epi32(r0, offset);
r1 = _mm_add_epi32(r1, offset);
r2 = _mm_add_epi32(r2, offset);
r3 = _mm_add_epi32(r3, offset);
auto r0_16 = _mm_packs_epi32(r0, r1); // 00001111
auto r1_16 = _mm_packs_epi32(r2, r3); // 22223333
auto r0_8 = _mm_packus_epi16(r0_16, r1_16); // 0000111122223333
_mm_storeu_si128((__m128i *)dstPtr, r0_8);
// next round
xcount -= 4;
scalePtr += 4;
if (bias) {
biasPtr += 4;
}
srcPtr += (4 * pack);
dstPtr += 4;
}
while (xcount) {
auto scale0 = _mm_set1_ps(scalePtr[0]);
auto data0 = _mm_loadu_ps(srcPtr);
data0 = _mm_mul_ps(data0, scale0);
if (bias) {
auto bias0 = _mm_set1_ps(biasPtr[0]);
data0 = _mm_add_ps(data0, bias0);
}
auto r0 = _mm_cvtps_epi32(_mm_round_ps(data0, 0));
r0 = _mm_add_epi32(r0, offset);
auto r0_16 = _mm_packs_epi32(r0, r0); // 00001111
auto r0_8 = _mm_packus_epi16(r0_16, r0_16); // 0000111122223333
_mm_storeu_si128((__m128i *)tmp, r0_8);
dstPtr[0] = tmp[0];
// next round
xcount--;
scalePtr += 1;
if (bias) {
biasPtr += 1;
}
srcPtr += pack;
dstPtr += 1;
}
}
return;
}
MNN_ERROR("dynamic quant error: x86_x64 avx512 don't suppport pack=%d yet\n", pack);
return;
}
static void _AVX512_MNNAsyQuantFunc(int8_t* dst, const float* src, float* qscale, float* qbias, const size_t* info) {
// input shape: [kernelsize, blockNum, blockLU, EP, LP]
auto blockNum = info[0];
auto EP = info[1]; // real area for data
auto LP = info[2]; // Innermost data layout, may come from backend's pack or gemmint8 units' SRC_UNIT
auto DST_XUNIT = info[3]; // backend gemmint8 units
auto SRC_UNIT = info[4];
auto kernelsize = info[5];
auto blockLU = info[6];
auto stride0 = blockNum * blockLU * EP * LP;
auto stride1 = blockLU * EP * LP;
for (int k = 0; k < kernelsize; ++k) {
for (int i = 0; i < blockNum; ++i) {
_AVX512_DynamicQuant(src + k * stride0 + i * stride1, dst + k * stride0 + i * stride1, qscale + i * EP, blockLU, EP, LP, qbias + i * EP);
}
}
}
void _AVX512_MNNReluWithSlopeChannel(float* dst, const float* src, const float* slope, size_t sizeQuad, size_t depthQuad) {
auto zero = _mm_set1_ps(0.0f);
auto zero2 = _mm512_set1_ps(0.0f);
int sizeC8 = sizeQuad;
for (int j = 0; j < depthQuad; j++) {
auto slopeZ = _mm512_loadu_ps(slope + PACK_UNIT * j);
const float* srcZ = src + PACK_UNIT * j * sizeQuad;
float* dstZ = dst + PACK_UNIT * j * sizeQuad;
for (int i = 0; i < sizeC8; i++) {
auto src = _mm512_loadu_ps(srcZ);
auto mask0 = _mm512_cmp_ps_mask(src, zero2, 0x01);
auto other = _mm512_mul_ps(src, slopeZ);
_mm512_storeu_ps(dstZ, _mm512_mask_blend_ps(mask0, src, other));
srcZ += PACK_UNIT;
dstZ += PACK_UNIT;
}
}
}
void _AVX512_MNNAxByClampBroadcastUnit(float* C, const float* A, const float* B, size_t width, size_t cStride, size_t aStride, size_t height, const float* parameters) {
auto minF = _mm512_broadcastss_ps(_mm_load_ss(parameters + 2));
auto maxF = _mm512_broadcastss_ps(_mm_load_ss(parameters + 3));
for (int y = 0; y < height; ++y) {
auto a = A + aStride * y;
auto b = B + PACK_UNIT * y;
auto bv = _mm512_loadu_ps(b);
auto c = C + cStride * y;
for (int x = 0; x < width; ++x) {
auto av = _mm512_loadu_ps(a);
auto cv = _mm512_add_ps(av, bv);
cv = _mm512_min_ps(cv, maxF);
cv = _mm512_max_ps(cv, minF);
_mm512_storeu_ps(c, cv);
a += PACK_UNIT;
c += PACK_UNIT;
}
}
}
void _AVX512_MNNConvRunForLineDepthwise(float* dst, const float* src, const float* weight, size_t width, size_t src_w_setup,
size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, size_t height,
size_t srcHStep, size_t dstHStep, const float* bias, const float* parameters) {
int dx, fx, fy;
const int unit = 4;
int widthUnit = width / unit;
int widthRemain = width - widthUnit * unit;
const float* weight_z = weight;
auto minF = _mm512_broadcastss_ps(_mm_load_ss(parameters + 0));
auto maxF = _mm512_broadcastss_ps(_mm_load_ss(parameters + 1));
auto bv = _mm512_loadu_ps(bias);
for (int y = 0; y < height; ++y) {
auto srcY = src + y * srcHStep;
auto dstY = dst + y * dstHStep;
for (dx = 0; dx < widthUnit; ++dx) {
auto dstValue0 = bv;
auto dstValue1 = bv;
auto dstValue2 = bv;
auto dstValue3 = bv;
for (fy = 0; fy < fh; ++fy) {
const float* src_y = srcY + fy * dilateY_step;
const float* weight_y = weight_z + fy * fw * PACK_UNIT;
for (fx = 0; fx < fw; ++fx) {
const float* src_x = src_y + fx * dilateX_step;
const float* weight_x = weight_y + PACK_UNIT * fx;
auto weightValue = _mm512_loadu_ps(weight_x);
dstValue0 = _mm512_fmadd_ps(_mm512_loadu_ps(src_x + 0 * src_w_setup), weightValue, dstValue0);
dstValue1 = _mm512_fmadd_ps(_mm512_loadu_ps(src_x + 1 * src_w_setup), weightValue, dstValue1);
dstValue2 = _mm512_fmadd_ps(_mm512_loadu_ps(src_x + 2 * src_w_setup), weightValue, dstValue2);
dstValue3 = _mm512_fmadd_ps(_mm512_loadu_ps(src_x + 3 * src_w_setup), weightValue, dstValue3);
}
}
dstValue0 = _mm512_min_ps(dstValue0, maxF);
dstValue1 = _mm512_min_ps(dstValue1, maxF);
dstValue2 = _mm512_min_ps(dstValue2, maxF);
dstValue3 = _mm512_min_ps(dstValue3, maxF);
dstValue0 = _mm512_max_ps(dstValue0, minF);
dstValue1 = _mm512_max_ps(dstValue1, minF);
dstValue2 = _mm512_max_ps(dstValue2, minF);
dstValue3 = _mm512_max_ps(dstValue3, minF);
_mm512_storeu_ps(dstY + PACK_UNIT * 0, dstValue0);
_mm512_storeu_ps(dstY + PACK_UNIT * 1, dstValue1);
_mm512_storeu_ps(dstY + PACK_UNIT * 2, dstValue2);
_mm512_storeu_ps(dstY + PACK_UNIT * 3, dstValue3);
dstY += PACK_UNIT * unit;
srcY += unit * src_w_setup;
}
for (dx = 0; dx < widthRemain; ++dx) {
float* dst_x = dstY + dx * PACK_UNIT;
auto dstValue = bv;
const float* src_z = srcY + src_w_setup * dx;
const float* weight_z = weight;
for (fy = 0; fy < fh; ++fy) {
const float* src_y = src_z + fy * dilateY_step;
const float* weight_y = weight_z + fy * fw * PACK_UNIT;
for (fx = 0; fx < fw; ++fx) {
const float* weight_x = weight_y + PACK_UNIT * fx;
const float* src_x = src_y + fx * dilateX_step;
dstValue = _mm512_fmadd_ps(_mm512_loadu_ps(src_x), _mm512_loadu_ps(weight_x), dstValue);
}
}
dstValue = _mm512_min_ps(dstValue, maxF);
dstValue = _mm512_max_ps(dstValue, minF);
_mm512_storeu_ps(dst_x, dstValue);
}
}
}
static MNNBinaryExecute _AVX512_MNNSelectBinaryFunctionForFloat(int opType) {
auto vecF = MNN::selectVector<Vec16, 16, float>(opType);
if (nullptr != vecF) {
return vecF;
}
return MNN::MNNGetCoreFunctions()->MNNSelectBinaryFunctionForFloat(opType);
}
void _AVX512_MNNScaleAndAddBias(float* dst, const float* src, const float* bias, const float* alpha, size_t planeNumber,
size_t biasNumber) {
for (int z = 0; z < biasNumber; ++z) {
float* dstZ = dst + planeNumber * PACK_UNIT * z;
const float* srcZ = src + planeNumber * PACK_UNIT * z;
auto biasZ = _mm512_loadu_ps(bias + PACK_UNIT * z);
auto alphaZ = _mm512_loadu_ps(alpha + PACK_UNIT * z);
for (int p = 0; p < planeNumber; ++p) {
float* dstX = dstZ + PACK_UNIT * p;
const float* srcX = srcZ + PACK_UNIT * p;
_mm512_storeu_ps(dstX, _mm512_fmadd_ps(_mm512_loadu_ps(srcX), alphaZ, biasZ));
}
}
}
void _AVX512_MNNDeconvRunForUnitDepthWise(const float* dst, float* src, const float* weight, size_t fw, size_t fh,
size_t weight_y_step, size_t dilateX_step, size_t dilateY_step) {
int fx, fy;
float* src_z = src;
const float* weight_z = weight;
Vec16 dstV = Vec16::load(dst);
for (fy = 0; fy < fh; ++fy) {
float* src_y = src_z + fy * dilateY_step;
const float* weight_y = weight_z + fy * weight_y_step;
for (fx = 0; fx < fw; ++fx) {
Vec16 weight_x = Vec16::load(weight_y + PACK_UNIT * fx);
Vec16 src_x = Vec16::load(src_y + fx * dilateX_step);
Vec16::save(src_y + fx * dilateX_step, src_x + weight_x * dstV);
}
}
}
void _AVX512_MNNDeconvRunForLineDepthwise(const float* dst, float* src, const float* weight, size_t width, size_t src_w_setup,
size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step) {
int dx;
for (dx = 0; dx < width; ++dx) {
const float* dst_x = dst + dx * PACK_UNIT;
float* src_dx = src + src_w_setup * dx;
_AVX512_MNNDeconvRunForUnitDepthWise(dst_x, src_dx, weight, fw, fh, fw * PACK_UNIT, dilateX_step, dilateY_step);
}
}
void _AVX512_MNNGridSampleComputeCord(float* dst, const float* src, size_t inH, size_t inW, size_t outH, size_t outW, bool alignCorners) {
__m512 zero = _mm512_setzero_ps();
__m512 one = _mm512_set1_ps(1);
__m512 half = _mm512_set1_ps(0.5f);
__m512 a = alignCorners ? one : zero;
__m512 b = alignCorners ? zero : one;
__m512 inW_sub_a = _mm512_sub_ps(_mm512_set1_ps(inW), a);
__m512 inH_sub_a = _mm512_sub_ps(_mm512_set1_ps(inH), a);
int area = outH * outW;
int areaC4 = area / PACK_UNIT;
int areaRemain = area - areaC4 * PACK_UNIT;
for (int i = 0; i < areaC4; ++i) {
__m512 grid0 = _mm512_loadu_ps(src);
__m512 grid1 = _mm512_loadu_ps(src + PACK_UNIT);
__m512 x = _mm512_shuffle_ps(grid0, grid1, 0x88);
__m512 y = _mm512_shuffle_ps(grid0, grid1, 0xdd);
__m512 cord_x = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, x), inW_sub_a), b));
__m512 cord_y = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, y), inH_sub_a), b));
__m512 cord0 = _mm512_unpacklo_ps(cord_x, cord_y);
__m512 cord1 = _mm512_unpackhi_ps(cord_x, cord_y);
_mm512_storeu_ps(dst, cord0);
_mm512_storeu_ps(dst + PACK_UNIT, cord1);
src += PACK_UNIT * 2;
dst += PACK_UNIT * 2;
}
if (areaRemain > 0) {
__mmask16 mask = 0xffff;
if (areaRemain > PACK_UNIT / 2) {
int shift = areaRemain * 2 - PACK_UNIT;
mask = (1 << shift) - 1;
__m512 grid0 = _mm512_loadu_ps(src);
__m512 grid1 = _mm512_maskz_loadu_ps(mask, src + PACK_UNIT);
__m512 x = _mm512_shuffle_ps(grid0, grid1, 0x88);
__m512 y = _mm512_shuffle_ps(grid0, grid1, 0xdd);
__m512 cord_x = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, x), inW_sub_a), b));
__m512 cord_y = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, y), inH_sub_a), b));
__m512 cord0 = _mm512_unpacklo_ps(cord_x, cord_y);
__m512 cord1 = _mm512_unpackhi_ps(cord_x, cord_y);
_mm512_storeu_ps(dst, cord0);
_mm512_mask_storeu_ps(dst + PACK_UNIT, mask, cord1);
} else {
int shift = areaRemain * 2;
mask = (1 << shift) - 1;
__m512 grid0 = _mm512_maskz_loadu_ps(mask, src);
__m512 grid1 = zero;
__m512 x = _mm512_shuffle_ps(grid0, grid1, 0x88);
__m512 y = _mm512_shuffle_ps(grid0, grid1, 0xdd);
__m512 cord_x = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, x), inW_sub_a), b));
__m512 cord_y = _mm512_mul_ps(half, _mm512_sub_ps(_mm512_mul_ps(_mm512_add_ps(one, y), inH_sub_a), b));
__m512 cord0 = _mm512_unpacklo_ps(cord_x, cord_y);
_mm512_mask_storeu_ps(dst, mask, cord0);
}
}
}
void _AVX512_MNNRoiPoolingMax(float* dst, const float* src, int hLen, int wLen, int iw) {
Vec16 max = Vec16(-FLT_MAX);
for (int h = 0; h < hLen; h++, src += iw * PACK_UNIT) {
for (int w = 0; w < wLen; w++) {
Vec16 in = Vec16::load(src + w * PACK_UNIT);
max = Vec16::max(max, in);
}
}
Vec16::save(dst, max);
}
void _AVX512_MNNRoiAlignMax(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth) {
for (int h = 0; h < pooledHeight; ++h, dst += pooledWidth * PACK_UNIT) {
int preCalcIdx = h * pooledWidth * samplingRatioArea;
for (int w = 0; w < pooledWidth; ++w) {
Vec16 res = Vec16(-FLT_MAX);
for (int i = 0; i < samplingRatioArea; ++i) {
const std::vector<int>& pos = vecPos[preCalcIdx];
const std::vector<float>& area = vecArea[preCalcIdx];
Vec16 val0 = Vec16::load(src + pos[0] * PACK_UNIT);
Vec16 val1 = Vec16::load(src + pos[1] * PACK_UNIT);
Vec16 val2 = Vec16::load(src + pos[2] * PACK_UNIT);
Vec16 val3 = Vec16::load(src + pos[3] * PACK_UNIT);
Vec16 mla = val0 * area[0];
mla = Vec16::fma(mla, val1, area[1]);
mla = Vec16::fma(mla, val2, area[2]);
mla = Vec16::fma(mla, val3, area[3]);
res = Vec16::max(res, mla);
preCalcIdx++;
}
Vec16::save(dst + w * PACK_UNIT, res);
}
}
}
void _AVX512_MNNRoiAlignAvg(float* dst, const float* src, const std::vector<std::vector<int>> &vecPos, const std::vector<std::vector<float>> &vecArea, int samplingRatioArea, int pooledHeight, int pooledWidth) {
float invSamplingCnt = 1.f / samplingRatioArea;
for (int h = 0; h < pooledHeight; ++h, dst += pooledWidth * PACK_UNIT) {
int preCalcIdx = h * pooledWidth * samplingRatioArea;
for (int w = 0; w < pooledWidth; ++w) {
Vec16 res = Vec16(0.f);
for (int i = 0; i < samplingRatioArea; ++i) {
const std::vector<int>& pos = vecPos[preCalcIdx];
const std::vector<float>& area = vecArea[preCalcIdx];
Vec16 val0 = Vec16::load(src + pos[0] * PACK_UNIT);
Vec16 val1 = Vec16::load(src + pos[1] * PACK_UNIT);
Vec16 val2 = Vec16::load(src + pos[2] * PACK_UNIT);
Vec16 val3 = Vec16::load(src + pos[3] * PACK_UNIT);
Vec16 mla = val0 * area[0];
mla = Vec16::fma(mla, val1, area[1]);
mla = Vec16::fma(mla, val2, area[2]);
mla = Vec16::fma(mla, val3, area[3]);
res += mla;
preCalcIdx++;
}
res = res * invSamplingCnt;
Vec16::save(dst + w * PACK_UNIT, res);
}
}
}
void _AVX512_MNNMatrixAdd(float* C, const float* A, const float* B, size_t widthC4, size_t cStride, size_t aStride,
size_t bStride, size_t height) {
for (int y = 0; y < height; ++y) {
auto a = A + aStride * y;
auto b = B + bStride * y;
auto c = C + cStride * y;
for (int x = 0; x < widthC4; ++x) {
_mm512_storeu_ps(c + PACK_UNIT * x, _mm512_add_ps(_mm512_loadu_ps(b + PACK_UNIT * x), _mm512_loadu_ps(a + PACK_UNIT * x)));
}
}
}
void _AVX512_MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride, size_t eSub, size_t hSub) {
const int unit = PACK_UNIT;
for (int y=0; y<hSub; ++y) {
auto c11Y = c11 + y * cStride;
auto c12Y = c12 + y * cStride;
auto c22Y = c22 + y * cStride;
auto c21Y = c21 + y * cStride;
auto xY = xAddr + y * eSub * unit;
for (int x=0; x<eSub; ++x) {
auto xv = _mm512_loadu_ps(xY + unit*x);
auto c21v = _mm512_loadu_ps(c21Y + unit*x);
auto c11v = _mm512_loadu_ps(c11Y + unit*x);
auto c22v = _mm512_loadu_ps(c22Y + unit*x);
auto c12v = _mm512_loadu_ps(c12Y + unit*x);
c12v = _mm512_add_ps(c12v, xv);
c21v = _mm512_add_ps(c12v, c21v);
c12v = _mm512_add_ps(c22v, c12v);
c22v = _mm512_add_ps(c22v, c21v);
c12v = _mm512_add_ps(c11v, c12v);
_mm512_storeu_ps(c12Y + unit*x, c12v);
_mm512_storeu_ps(c22Y + unit*x, c22v);
_mm512_storeu_ps(c21Y + unit*x, c21v);
}
}
}
void _AVX512_MNNMatrixSub(float* C, const float* A, const float* B, size_t widthC4, size_t cStride, size_t aStride,
size_t bStride, size_t height) {
for (int y = 0; y < height; ++y) {
auto a = A + aStride * y;
auto b = B + bStride * y;
auto c = C + cStride * y;
for (int x = 0; x < widthC4; ++x) {
_mm512_storeu_ps(c + PACK_UNIT * x, _mm512_sub_ps(_mm512_loadu_ps(a + PACK_UNIT * x), _mm512_loadu_ps(b + PACK_UNIT * x)));
}
}
}
void _AVX512_MNNMultiAndDestTransformCommon23(float **cacheLine, const float *weigth, float *dest, int cacheLineSize, int ow, const float* bias, const float* parameter) {
int unit = ow / 2;
MNN_ASSERT(cacheLineSize >= 1);
auto biasF = Vec16::load(bias);
auto minF = Vec16(parameter[2]);
auto maxF = Vec16(parameter[3]);
auto SRC_TILE_UNIT = 4 * PACK_UNIT;
auto DST_TILE_UNIT = 2 * PACK_UNIT;
for (int x = 0; x < unit; ++x) {
auto offset = SRC_TILE_UNIT * x;
int i = 0;
Vec16 m0 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 0) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 0);
Vec16 m1 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 1) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 1);
Vec16 m2 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 2) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 2);
Vec16 m3 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 3) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 3);
for (i = 1; i < cacheLineSize; ++i) {
m0 = m0 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 0) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 0);
m1 = m1 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 1) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 1);
m2 = m2 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 2) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 2);
m3 = m3 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 3) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 3);
}
auto o0 = m0 + m1 + m2 + biasF;
auto o1 = m1 - m2 + m3 + biasF;
o0 = Vec16::min(maxF, o0);
o1 = Vec16::min(maxF, o1);
o0 = Vec16::max(minF, o0);
o1 = Vec16::max(minF, o1);
Vec16::save(dest + DST_TILE_UNIT * x + 0 * PACK_UNIT, o0);
Vec16::save(dest + DST_TILE_UNIT * x + 1 * PACK_UNIT, o1);
}
if (unit * 2 < ow) {
auto offset = SRC_TILE_UNIT * unit;
int i = 0;
Vec16 m0 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 0) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 0);
Vec16 m1 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 1) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 1);
Vec16 m2 = Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 2) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 2);
for (i = 1; i < cacheLineSize; ++i) {
m0 = m0 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 0) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 0);
m1 = m1 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 1) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 1);
m2 = m2 + Vec16::load(weigth + i * SRC_TILE_UNIT + PACK_UNIT * 2) * Vec16::load(cacheLine[i] + offset + PACK_UNIT * 2);
}
auto o0 = m0 + m1 + m2 + biasF;
o0 = Vec16::min(maxF, o0);
o0 = Vec16::max(minF, o0);
Vec16::save(dest + DST_TILE_UNIT * unit, o0);
}
}
static void _AVX512_MNNConvDwF23SourceTransUnit(const float *source, float *dest, size_t unit) {
if (unit <= 0) {
return;
}
Vec16 v0 = Vec16::load(source + PACK_UNIT * 0);
Vec16 v1 = Vec16::load(source + PACK_UNIT * 1);
Vec16 v2;
Vec16 v3;
source += 2 * PACK_UNIT;
for (int x = 0; x < unit; ++x) {
v2 = Vec16::load(source + 0 * PACK_UNIT);
v3 = Vec16::load(source + 1 * PACK_UNIT);
auto m0 = v0 - v2;
auto m1 = v1 + v2;
auto m2 = v2 - v1;
auto m3 = v3 - v1;
Vec16::save(dest + PACK_UNIT * 0, m0);
Vec16::save(dest + PACK_UNIT * 1, m1);
Vec16::save(dest + PACK_UNIT * 2, m2);
Vec16::save(dest + PACK_UNIT * 3, m3);
source += (2 * PACK_UNIT);
dest += (4 * PACK_UNIT);
v0 = v2;
v1 = v3;
}
}
void _AVX512_MNNSourceTransformCommonF23(const float *source, float *dest, int unit, int iw, int pad, int su, int eu) {
for (int x = 0; x < su; ++x) {
auto dstX = dest + 4 * PACK_UNIT * x;
auto sx = x * 2 - (int)pad;
auto ex = sx + 4;
auto clampSx = std::max(sx, 0);
auto clampEx = std::min(ex, (int)iw);
Vec16 v[4] = {0.0f, 0.0f, 0.0f, 0.0f};
for (int i = clampSx; i < clampEx; ++i) {
v[i - sx] = Vec16::load(source + PACK_UNIT * i);
}
auto m0 = v[0] - v[2];
auto m1 = v[1] + v[2];
auto m2 = v[2] - v[1];
auto m3 = v[3] - v[1];
Vec16::save(dstX + PACK_UNIT * 0, m0);
Vec16::save(dstX + PACK_UNIT * 1, m1);
Vec16::save(dstX + PACK_UNIT * 2, m2);
Vec16::save(dstX + PACK_UNIT * 3, m3);
}
_AVX512_MNNConvDwF23SourceTransUnit(source + PACK_UNIT * (su * 2 - pad), dest + PACK_UNIT * 4 * su, eu - su);
for (int x = eu; x < unit; ++x) {
auto dstX = dest + PACK_UNIT * 4 * x;
auto sx = x * 2 - (int)pad;
auto ex = sx + 4;
auto clampSx = std::max(sx, 0);
auto clampEx = std::min(ex, (int)iw);
Vec16 v[4] = {0.0f, 0.0f, 0.0f, 0.0f};
for (int i = clampSx; i < clampEx; ++i) {
v[i - sx] = Vec16::load(source + PACK_UNIT * i);
}
auto m0 = v[0] - v[2];
auto m1 = v[1] + v[2];
auto m2 = v[2] - v[1];
auto m3 = v[3] - v[1];
Vec16::save(dstX + PACK_UNIT * 0, m0);
Vec16::save(dstX + PACK_UNIT * 1, m1);
Vec16::save(dstX + PACK_UNIT * 2, m2);
Vec16::save(dstX + PACK_UNIT * 3, m3);
}
}
void _AVX512_MNNConvDwF23MulTransUnit(float **cacheLine, const float *weigth, float *dest, size_t ow, const float* bias, const float* parameter) {
int unit = ow / 2;
auto SRC_TILE_UNIT = 4 * PACK_UNIT;
auto DST_TILE_UNIT = 2 * PACK_UNIT;
auto w00 = _mm512_loadu_ps(weigth + 0 * SRC_TILE_UNIT + PACK_UNIT * 0);
auto w01 = _mm512_loadu_ps(weigth + 0 * SRC_TILE_UNIT + PACK_UNIT * 1);
auto w02 = _mm512_loadu_ps(weigth + 0 * SRC_TILE_UNIT + PACK_UNIT * 2);
auto w03 = _mm512_loadu_ps(weigth + 0 * SRC_TILE_UNIT + PACK_UNIT * 3);
auto w10 = _mm512_loadu_ps(weigth + 1 * SRC_TILE_UNIT + PACK_UNIT * 0);
auto w11 = _mm512_loadu_ps(weigth + 1 * SRC_TILE_UNIT + PACK_UNIT * 1);
auto w12 = _mm512_loadu_ps(weigth + 1 * SRC_TILE_UNIT + PACK_UNIT * 2);
auto w13 = _mm512_loadu_ps(weigth + 1 * SRC_TILE_UNIT + PACK_UNIT * 3);
auto w20 = _mm512_loadu_ps(weigth + 2 * SRC_TILE_UNIT + PACK_UNIT * 0);
auto w21 = _mm512_loadu_ps(weigth + 2 * SRC_TILE_UNIT + PACK_UNIT * 1);
auto w22 = _mm512_loadu_ps(weigth + 2 * SRC_TILE_UNIT + PACK_UNIT * 2);
auto w23 = _mm512_loadu_ps(weigth + 2 * SRC_TILE_UNIT + PACK_UNIT * 3);
auto biasF = _mm512_loadu_ps(bias);
auto minF = _mm512_broadcastss_ps(_mm_load_ss(parameter + 2));
auto maxF = _mm512_broadcastss_ps(_mm_load_ss(parameter + 3));
for (int x = 0; x < unit; ++x) {
auto offset = PACK_UNIT * 4 * x;
int i = 0;
auto m0 = _mm512_mul_ps(w00, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 0));
auto m1 = _mm512_mul_ps(w01, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 1));
auto m2 = _mm512_mul_ps(w02, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 2));
auto m3 = _mm512_mul_ps(w03, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 3));
m0 = _mm512_fmadd_ps(w10, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 0), m0);
m1 = _mm512_fmadd_ps(w11, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 1), m1);
m2 = _mm512_fmadd_ps(w12, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 2), m2);
m3 = _mm512_fmadd_ps(w13, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 3), m3);
m0 = _mm512_fmadd_ps(w20, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 0), m0);
m1 = _mm512_fmadd_ps(w21, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 1), m1);
m2 = _mm512_fmadd_ps(w22, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 2), m2);
m3 = _mm512_fmadd_ps(w23, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 3), m3);
auto o0 = _mm512_add_ps(_mm512_add_ps(m0, _mm512_add_ps(m1, m2)), biasF);
auto o1 = _mm512_add_ps(_mm512_add_ps(m3, _mm512_sub_ps(m1, m2)), biasF);
o0 = _mm512_min_ps(maxF, o0);
o1 = _mm512_min_ps(maxF, o1);
o0 = _mm512_max_ps(minF, o0);
o1 = _mm512_max_ps(minF, o1);
_mm512_storeu_ps(dest + DST_TILE_UNIT * x + 0 * PACK_UNIT, o0);
_mm512_storeu_ps(dest + DST_TILE_UNIT * x + 1 * PACK_UNIT, o1);
}
if (unit * 2 < ow) {
auto offset = PACK_UNIT * 4 * unit;
auto m0 = _mm512_mul_ps(w00, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 0));
auto m1 = _mm512_mul_ps(w01, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 1));
auto m2 = _mm512_mul_ps(w02, _mm512_loadu_ps(cacheLine[0] + offset + PACK_UNIT * 2));
m0 = _mm512_fmadd_ps(w10, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 0), m0);
m1 = _mm512_fmadd_ps(w11, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 1), m1);
m2 = _mm512_fmadd_ps(w12, _mm512_loadu_ps(cacheLine[1] + offset + PACK_UNIT * 2), m2);
m0 = _mm512_fmadd_ps(w20, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 0), m0);
m1 = _mm512_fmadd_ps(w21, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 1), m1);
m2 = _mm512_fmadd_ps(w22, _mm512_loadu_ps(cacheLine[2] + offset + PACK_UNIT * 2), m2);
auto o0 = _mm512_add_ps(_mm512_add_ps(m0, _mm512_add_ps(m1, m2)), biasF);
o0 = _mm512_min_ps(maxF, o0);
o0 = _mm512_max_ps(minF, o0);
_mm512_storeu_ps(dest + DST_TILE_UNIT * unit, o0);
}
}
static void _8BitcopyWithStrideC4(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) {
auto src = (float*)srcO;
auto dst = (float*)dstO;
for (int i=0; i<size; ++i) {
_mm256_storeu_ps(dst, _mm256_loadu_ps(src));
src+= (8 * stride);
dst+= (8 * ds);
}
}
static void _16BitcopyWithStrideC4(uint8_t* dstO, const uint8_t* srcO, int size, int stride, int ds) {
auto src = (float*)srcO;
auto dst = (float*)dstO;
for (int i=0; i<size; ++i) {
_mm512_storeu_ps(dst, _mm512_loadu_ps(src));
src+= (16 * stride);
dst+= (16 * ds);
}
}
static MNNCopyWithStride _selectBlit(int bytesC4) {
if (64 == bytesC4) {
return _16BitcopyWithStrideC4;
}
if (32 == bytesC4) {
return _8BitcopyWithStrideC4;
}
return nullptr;
}
static void _AVX512_MNNAdjustOptimalSparseKernel(int& sparseBlockOC, MNN::CoreFunctions::MNNPackedSparseMatMul& packedSparseMatMul) {
if(sparseBlockOC == 8) {
packedSparseMatMul = _AVX512_MNNPackedSparseMatMulEpx8;
return;
} else if(sparseBlockOC % 8 == 0) {
// MNN_PRINT("avx512 downgrade sparse from:%d, ",sparseBlockOC);
sparseBlockOC = 8;
packedSparseMatMul = _AVX512_MNNPackedSparseMatMulEpx8;
// MNN_PRINT(" to:%d\n",sparseBlockOC);
return;
}
else if(sparseBlockOC == 4) {
packedSparseMatMul = _AVX512_MNNPackedSparseMatMulEpx4;
return;
} else if(sparseBlockOC % 4 == 0) {
// MNN_PRINT("avx512 downgrade sparse from:%d, ",sparseBlockOC);
sparseBlockOC = 4;
packedSparseMatMul = _AVX512_MNNPackedSparseMatMulEpx4;
// MNN_PRINT(" to:%d\n",sparseBlockOC);
return;
} else {
sparseBlockOC = 1;
packedSparseMatMul = _AVX512_MNNPackedSparseMatMulEpx1;
return;
}
}
void _AVX512_ExtraInit(void* functions) {
auto coreFunction = static_cast<MNN::CoreFunctions*>(functions);
coreFunction->MNNSelectBlitFunction = _selectBlit;
coreFunction->MNNPoolingAvg = (decltype(coreFunction->MNNPoolingAvg))(MNN::poolingAvg<float, Vec16, 16>);
// Set min value as 1 << 24
coreFunction->MNNPoolingMax = (decltype(coreFunction->MNNPoolingMax))(MNN::poolingMax<float, Vec16, 16, -16777216>);
coreFunction->MNNPoolingMaxWithRedice = (decltype(coreFunction->MNNPoolingMaxWithRedice))(MNN::poolingMaxWithRedice<float, -16777216>);
coreFunction->MNNSelectBinaryFunctionForFloat = _AVX512_MNNSelectBinaryFunctionForFloat;
coreFunction->MNNCopyC4WithStride = _AVX512_MNNCopyC4WithStride;
coreFunction->MNNAddC4WithStride = _AVX512_MNNAddC4WithStride;
coreFunction->MNNScaleAndAddBias = _AVX512_MNNScaleAndAddBias;
coreFunction->MNNMatrixAdd = _AVX512_MNNMatrixAdd;
coreFunction->MNNMatrixSub = _AVX512_MNNMatrixSub;
coreFunction->MNNAbsMax = _AVX512_MNNAbsMaxFP32;
coreFunction->MNNDynamicQuant = _AVX512_DynamicQuant;
coreFunction->MNNAsyQuantInfo = _AVX512_MNNAsyQuantInfo;
coreFunction->MNNAsyQuantFunc = _AVX512_MNNAsyQuantFunc;
coreFunction->MNNCountMaxMinValue = _AVX512_MNNCountMinMaxValue;
coreFunction->MNNConvRunForLineDepthwise = _AVX512_MNNConvRunForLineDepthwise;
coreFunction->MNNAxByClampBroadcastUnit = _AVX512_MNNAxByClampBroadcastUnit;
coreFunction->MNNStrassenMergeCFunction = _AVX512_MNNStrassenMergeCFunction;
coreFunction->MNNReluWithSlopeChannel = _AVX512_MNNReluWithSlopeChannel;
coreFunction->MNNDeconvRunForLineDepthwise = _AVX512_MNNDeconvRunForLineDepthwise;
coreFunction->MNNDeconvRunForUnitDepthWise = _AVX512_MNNDeconvRunForUnitDepthWise;
coreFunction->MNNGridSampleComputeCord = _AVX512_MNNGridSampleComputeCord;
coreFunction->MNNRoiPoolingMax = _AVX512_MNNRoiPoolingMax;
coreFunction->MNNRoiAlignMax = _AVX512_MNNRoiAlignMax;
coreFunction->MNNRoiAlignAvg = _AVX512_MNNRoiAlignAvg;
coreFunction->MNNGridSampleInterp = MNNGridSampleInterp;
coreFunction->MNNGridSampleInterp3D = MNNGridSampleInterp3D;
coreFunction->MNNGridSampleInterpGrad = MNNGridSampleInterpGrad;
coreFunction->MNNGetSparseMatMulPackMode = _AVX512_MNNGetSparseMatMulPackMode;
coreFunction->MNNAdjustOptimalSparseKernel = _AVX512_MNNAdjustOptimalSparseKernel;
}