source/backend/opencl/execution/buffer/AttentionBufExecution.cpp (1,392 lines of code) (raw):
//
// SoftmaxBufExecution.cpp
// MNN
//
// Created by MNN on 2024/04/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
#include "backend/opencl/execution/buffer/AttentionBufExecution.hpp"
#include <fstream>
namespace MNN {
namespace OpenCL {
KVCacheCLManager::KVCacheCLManager(Backend *backend, bool kv_cahce) : mKVCache(kv_cahce){
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
}
void KVCacheCLManager::allocKVCache(const KVMeta* meta, bool isDecodeResize) {
if (!mKVCache) {
return;
}
mPastLength = meta != nullptr ? meta->previous : 0;
if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){
mByte = 2;
}
reallocKVCache(meta, isDecodeResize);
}
bool KVCacheCLManager::reallocKVCache(const KVMeta* meta, bool isDecodeResize) {
if (!mKVCache) {
return false;
}
int kvSeqlen = meta->previous + meta->add - meta->remove + meta->computeReverseSize();
int start = mPastLength - meta->remove;
cl_int res;
// latest length larger than maxLen
if(kvSeqlen > mMaxLength){
int copylen = mPastLength - meta->remove + meta->computeReverseSize();
bool needCopy = copylen > 0;
size_t oldSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte;
size_t oldMaxlen = ROUND_UP(mMaxLength, 4);
mMaxLength = kvSeqlen + mExpandChunk;
size_t newMaxlen = ROUND_UP(mMaxLength, 4);
size_t bufferSize = UP_DIV(mMaxLength, 4) * mKvNumHead * mHeadDim * 4 * mByte;
// past_key: [1, numhead, headdim, maxlen]
auto newKey = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize);
// past_value: [1, numhead, maxlen, headdim]
auto newValue = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize);
if(needCopy){
// copy key
{
size_t oldMaxlenSize = oldMaxlen * mByte;
size_t newMaxlenSize = newMaxlen * mByte;
char *newKeyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newKey, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res);
char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res);
if(newKeyPtr != nullptr && keyPtr != nullptr && res == CL_SUCCESS){
for(int i = 0; i < mKvNumHead * mHeadDim; ++i){
::memcpy(newKeyPtr + i * newMaxlenSize, keyPtr + i * oldMaxlenSize, oldMaxlenSize);
}
}else{
MNN_ERROR("Map error key_ptr == nullptr \n");
MNN_ASSERT(false);
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newKey, newKeyPtr);
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastKey.get(), keyPtr);
}
// copy value
{
char *newValuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newValue, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res);
char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res);
if(newValuePtr != nullptr && valuePtr != nullptr && res == CL_SUCCESS){
for(int i = 0; i < mKvNumHead; ++i){
for(int j = 0; j < copylen; ++j){
::memcpy(newValuePtr + (i * newMaxlen + j) * mHeadDim * mByte, valuePtr + (i * oldMaxlen + j) * mHeadDim * mByte, mHeadDim * mByte);
}
}
}else{
MNN_ERROR("Map error value_ptr == nullptr \n");
MNN_ASSERT(false);
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newValue, newValuePtr);
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastValue.get(), valuePtr);
}
}
mPastKey.reset(newKey);
mPastValue.reset(newValue);
// resize phase don't update mPastLength value, excute phase will update it
if(false == isDecodeResize){
mPastLength = start;
}
}
// Remove
// resize phase don't remove kvcache, excute phase will do it
if(false == isDecodeResize){
if (0 == meta->n_reserve) {
mPastLength = start;
return true;
}
size_t pastkvSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte;
char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res);
char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res);
// TODO: need to ensure reserve info is sorted
for (int n = 0; n < meta->n_reserve; ++n) {
auto begin = meta->reserve[2 * n];
auto length = meta->reserve[2 * n + 1];
// past_key : [mKvNumHead, mHeadDim, mMaxLength]
// past_value : [mKvNumHead, mMaxLength, mHeadDim]
auto copySrcIndex = start + begin;
auto copyDstIndex = start;
for(int i = 0; i < mKvNumHead * mHeadDim; i++) {
::memcpy(keyPtr + (i * mMaxLength + copyDstIndex) * mByte, keyPtr + (i * mMaxLength + copySrcIndex) * mByte, length * mByte);
}
for(int i = 0; i < mKvNumHead; i++) {
for(int j = 0; j < length; j++) {
::memcpy(valuePtr + (i * mMaxLength + copyDstIndex + j) * mHeadDim * mByte, valuePtr + (i * mMaxLength + copySrcIndex + j) * mHeadDim * mByte, mHeadDim * mByte);
}
}
start += length;
}
mPastLength = (int)start;
}
return true;
}
void AttentionBufExecution::handleKVCache(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
if(mHasMask) {
auto mask = inputs[3];
mIsAddMask = (mask->getType() == halide_type_of<float>());
}
auto query = inputs[0];
auto key = inputs[1];
auto shape = query->shape();
int batch = shape[0];
int seqlen = shape[1];
int numHead = shape[2];
int kvNumHead = key->shape()[2];
int headDim = shape[3];
if(!mNeedKvCache) {
mPastKvSeqlen = 0;
mKvSeqlen = seqlen;
mKeyValueMaxlen = ROUND_UP(seqlen, 4);
mDecodeTmpMaxlen = ROUND_UP(seqlen, 4);
return;
}
MNN_ASSERT(inputs.size() >= 4);
auto mask = inputs[3];
auto mask_shape = mask->shape();
int mask_seqlen = mask_shape[2];
int maskKvlen = mask_shape[3];
mKVCacheCLManager->setArgs(numHead, kvNumHead, headDim);
mKVCacheCLManager->allocKVCache(mMeta, mIsDecode);
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
mDecodeTmpMaxlen = mKeyValueMaxlen;
mPastKvSeqlen = mKVCacheCLManager->pastKvLength();
mKvSeqlen = mPastKvSeqlen + seqlen;
}
ErrorCode AttentionBufExecution::init() {
if(!mNeedKvCache) {
return NO_ERROR;
}
//clear update arg vector, if prefill and decode use the same one
mOpRecordUpdateInfo.clear();
mRgQUpdateInfo.update_kernel_args.clear();
mRgQUpdateInfo.update_global_size.clear();
mRgQUpdateInfo.update_local_size.clear();
mRgUpdateInfo.update_kernel_args.clear();
mRgUpdateInfo.update_global_size.clear();
mRgUpdateInfo.update_local_size.clear();
mQkUpdateInfo.update_kernel_args.clear();
mQkUpdateInfo.update_global_size.clear();
mQkUpdateInfo.update_local_size.clear();
mSoftMaxUpdateInfo.update_kernel_args.clear();
mSoftMaxUpdateInfo.update_global_size.clear();
mSoftMaxUpdateInfo.update_local_size.clear();
mRgVUpdateInfo.update_kernel_args.clear();
mRgVUpdateInfo.update_global_size.clear();
mRgVUpdateInfo.update_local_size.clear();
mQkvUpdateInfo.update_kernel_args.clear();
mQkvUpdateInfo.update_global_size.clear();
mQkvUpdateInfo.update_local_size.clear();
return NO_ERROR;
}
ErrorCode AttentionBufExecution::UpdateArgs(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
if(!mNeedKvCache) {
return NO_ERROR;
}
auto query = inputs[0];
auto key = inputs[1];
auto value = inputs[2];
auto mask = inputs[3];
auto shape = query->shape();
int batch = shape[0];
int seqlen = shape[1];
int numHead = shape[2];
int kvNumHead = key->shape()[2];
int headDim = shape[3];
int group_size = numHead / kvNumHead;
float scale = 1.0 / sqrt(headDim);
auto mask_shape = mask->shape();
int mask_seqlen = mask_shape[2];
int maskKvlen = mask_shape[3];
mPastKvSeqlen = mKVCacheCLManager->pastKvLength();
mKvSeqlen = mKVCacheCLManager->pastKvLength() + seqlen;
mKVCacheCLManager->addKvLength(seqlen);
// prefill
if(mIsDecode == false){
// key value static memory has been changed, need reset args
if(mKeyValueMaxlen != ROUND_UP(mKVCacheCLManager->maxLength(), 4)){
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
#ifndef ENABLE_OPENCL_TIME_PROFILER
if(mOpenCLBackend->isUseRecordQueue()){
if(mLongPrefill){
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
mQkUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
mQkvUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
}else{
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
mQkUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
mQkvUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
}
} else {
#endif
if(mLongPrefill){
// rearrange key value
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange_vec[0]->get().setArg(9, *mKVCacheCLManager->key());
ret |= mKernel_rearrange_vec[0]->get().setArg(10, *mKVCacheCLManager->value());
ret |= mKernel_rearrange_vec[0]->get().setArg(14, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
}else{
{
// rearrange key
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange->get().setArg(4, *mKVCacheCLManager->key());
ret |= mKernel_rearrange->get().setArg(5, mPastKvSeqlen);
ret |= mKernel_rearrange->get().setArg(6, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
}
{
// matmul qk
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk->get().setArg(4, *mKVCacheCLManager->key());
ret |= mKernel_qk->get().setArg(10, mKvSeqlen);
ret |= mKernel_qk->get().setArg(11, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode");
}
{
// softmax
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk->get().setArg(7, mKvSeqlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax");
}
{
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrangeV->get().setArg(4, *mKVCacheCLManager->value());
ret |= mKernel_rearrangeV->get().setArg(5, mPastKvSeqlen);
ret |= mKernel_rearrangeV->get().setArg(6, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v");
}
// qk * value
{
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv->get().setArg(4, *mKVCacheCLManager->value());
ret |= mKernel_qkv->get().setArg(7, mKvSeqlen);
ret |= mKernel_qkv->get().setArg(8, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode");
}
}
#ifndef ENABLE_OPENCL_TIME_PROFILER
}
#endif
}
return NO_ERROR;
}
// Decode
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
if(mKvSeqlen > mDecodeTmpMaxlen){
mDecodeTmpMaxlen = mKeyValueMaxlen;
mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
}
mGlobalWorkSizeQk0 = UP_DIV(mKvSeqlen, 4);
mQkGlobal_size[0] = ROUND_UP(mGlobalWorkSizeQk0, std::max((uint32_t)1, mLocalWorkSizeQk[0]));
mGlobalWorkSizeQk[0] = mQkGlobal_size[0];
#ifndef ENABLE_OPENCL_TIME_PROFILER
// use record, only update args
if(mOpenCLBackend->isUseRecordQueue()){
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
mQkUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->key()))();
mQkUpdateInfo.update_kernel_args[2].arg_value = &openCLDeferBuffer(mTempQK.get())();
mSoftMaxUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempQK.get())();
mSoftMaxUpdateInfo.update_kernel_args[1].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
mQkvUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
mQkvUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->value()))();
} else {
#endif
// not use record, need update args by using setArg
{
// rearrange key
uint32_t index = 4;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange->get().setArg(index++, *mKVCacheCLManager->key());
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
}
{
// matmul qk
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk0);
index++;
index++;
ret |= mKernel_qk->get().setArg(index++, *mKVCacheCLManager->key());
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
index++;
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode");
}
{
// softmax
uint32_t index = 3;
cl_int ret = CL_SUCCESS;
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
index++;
index++;
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax");
}
{
uint32_t index = 4;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrangeV->get().setArg(index++, *mKVCacheCLManager->value());
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v");
}
// qk * value
{
uint32_t index = 2;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
ret |= mKernel_qkv->get().setArg(index++, *mKVCacheCLManager->value());
index++;
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode");
}
#ifndef ENABLE_OPENCL_TIME_PROFILER
}
#endif
return NO_ERROR;
}
int AttentionBufExecution::getLocalSize(int size, int maxGroupSize){
int local_size = 1;
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
local_size *= 2;
}
return local_size;
}
ErrorCode AttentionBufExecution::longPrefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
auto query = inputs[0];
auto key = inputs[1];
auto value = inputs[2];
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto shape = query->shape();
int batch = shape[0];
int seqlen = shape[1];
int numHead = shape[2];
int kvNumHead = key->shape()[2];
int headDim = shape[3];
int group_size = numHead / kvNumHead;
float scale = 1.0 / sqrt(headDim);
mAlignQ = 32;
mAlignKV = 32;
mAlignHDK = 4;
mAlignHDN = 32;
float useMemorySize = 1.0 * ROUND_UP(seqlen, mAlignQ) / 1024.0 * ROUND_UP(seqlen, mAlignKV) / 1024.0 * batch * numHead;
// elementSize larger than 32M
if(useMemorySize > 32.0) {
mQseqSplitNum = useMemorySize >= 256.0 ? 8 : ((useMemorySize < 128.0) ? 2 : 4);
}
mKernel_rearrange_vec.resize(1); mGwsRearrgVec.resize(1); mLwsRearrgVec.resize(1);
mKernel_mask_vec.resize(1); mGwsMaskVec.resize(1); mLwsMaskVec.resize(1);
mKernel_qk_vec.resize(mQseqSplitNum); mGwsQkVec.resize(mQseqSplitNum); mLwsQkVec.resize(mQseqSplitNum);
mKernel_softmax_vec.resize(mQseqSplitNum); mGwsSoftMaxVec.resize(mQseqSplitNum); mLwsSoftMaxVec.resize(mQseqSplitNum);
mKernel_trans_vec.resize(mQseqSplitNum); mGwsTransVec.resize(mQseqSplitNum); mLwsTransVec.resize(mQseqSplitNum);
mKernel_qkv_vec.resize(mQseqSplitNum); mGwsQkvVec.resize(mQseqSplitNum); mLwsQkvVec.resize(mQseqSplitNum);
mKernel_clip_vec.resize(1); mGwsClipVec.resize(1); mLwsClipVec.resize(1);
mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDK) * batch * numHead}));
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDK) * batch * numHead}));
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDN) * batch * numHead}));
if(mHasMask) {
if(mIsAddMask) {
mTempMask.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch}));
} else {
mTempMask.reset(Tensor::createDevice<uint32_t>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch}));
}
}
mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum}));
mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum}));
mTempQKV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDN) * batch * numHead}));
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
if(mHasMask) {
mOpenCLBackend->onAcquireBuffer(mTempMask.get(), Backend::DYNAMIC);
}
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempQKV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
if(mHasMask) {
mOpenCLBackend->onReleaseBuffer(mTempMask.get(), Backend::DYNAMIC);
}
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQKV.get(), Backend::DYNAMIC);
// query: [batch, seqLenQ, headNum, headDim] -> mTempQ: [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ)]
// key: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempK: [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)]
// value: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempV: [batch*headNum/group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDK]
// key & value -> pastKey & pastValue (copy)
int seq_idx = 0;
// rearrange qkv
{
std::set<std::string> buildOption;
if((headDim % 4) != 0){
buildOption.emplace("-DHEADDIM_LEAVE");
}
// generate cache for every option
{
auto option = buildOption;
auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
}
{
auto option = buildOption;
option.emplace("-DSEQLEN_LEAVE");
auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
}
if((seqlen % 4) != 0){
buildOption.emplace("-DSEQLEN_LEAVE");
}
if(mNeedKvCache) {
buildOption.emplace("-DSAVE_KV");
}
int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ);
int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV);
int head_dim_pack_qk = ROUND_UP(headDim, mAlignHDK);
int head_dim_pack_v = ROUND_UP(headDim, mAlignHDN);
int tile[4] = {mAlignQ, mAlignKV, mAlignHDK, mAlignHDN};
int shape[4] = {seqlen, mKvSeqlen, numHead, headDim};
int param[4] = {group_size, batch, 0, 0};
mKernel_rearrange_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_qkv", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange_vec[seq_idx]));
mGwsRearrgVec[seq_idx] = {static_cast<uint32_t>(ALIMAX(UP_DIV(seq_len_pack_q, 4), UP_DIV(seq_len_pack_kv, 4))), \
static_cast<uint32_t>(ALIMAX(UP_DIV(head_dim_pack_qk, 4), UP_DIV(head_dim_pack_v, 4))), \
static_cast<uint32_t>(batch*numHead)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][0]);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][1]);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][2]);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(query));
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(key));
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(value));
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQ.get()));
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempK.get()));
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempV.get()));
if(mNeedKvCache) {
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->key());
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->value());
}
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, tile);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, shape);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, param);
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mKeyValueMaxlen);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_qkv");
mLwsRearrgVec[seq_idx] = localWS3DDefault(mGwsRearrgVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_qkv", mKernel_rearrange_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first;
mGwsRearrgVec[seq_idx][0] = ROUND_UP(mGwsRearrgVec[seq_idx][0], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][0]));
mGwsRearrgVec[seq_idx][1] = ROUND_UP(mGwsRearrgVec[seq_idx][1], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][1]));
mGwsRearrgVec[seq_idx][2] = ROUND_UP(mGwsRearrgVec[seq_idx][2], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][2]));
if(mNeedKvCache) {
mRgUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
mRgUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
}
mRgUpdateInfo.update_kernel_args.push_back({0, 14, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], &mRgUpdateInfo);
}
// mask rearaange
if(mHasMask)
{
std::set<std::string> buildOption;
int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ);
int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV);
int shape[4] = {seqlen, mKvSeqlen, mAlignQ, mAlignKV};
mKernel_mask_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_mask", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_mask_vec[seq_idx]));
mGwsMaskVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_pack_q, 4)), \
static_cast<uint32_t>(UP_DIV(seq_len_pack_kv, 4)), \
static_cast<uint32_t>(batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][0]);
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][1]);
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][2]);
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(inputs[3]));
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempMask.get()));
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, shape);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_mask");
mLwsMaskVec[seq_idx] = localWS3DDefault(mGwsMaskVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_mask", mKernel_mask_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first;
mGwsMaskVec[seq_idx][0] = ROUND_UP(mGwsMaskVec[seq_idx][0], std::max((uint32_t)1, mLwsMaskVec[seq_idx][0]));
mGwsMaskVec[seq_idx][1] = ROUND_UP(mGwsMaskVec[seq_idx][1], std::max((uint32_t)1, mLwsMaskVec[seq_idx][1]));
mGwsMaskVec[seq_idx][2] = ROUND_UP(mGwsMaskVec[seq_idx][2], std::max((uint32_t)1, mLwsMaskVec[seq_idx][2]));
mOpenCLBackend->recordKernel3d(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx]);
}
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
// qk matmul
{
// Q : [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M]
// K : [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)] -> [B, K, N]
// QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] -> [B, M, N]
int loop = batch * numHead;
int e_pack = ROUND_UP(seqlen, mAlignQ);
int e_pack_piece = e_pack / mQseqSplitNum;
int h_pack = ROUND_UP(mKvSeqlen, mAlignKV);
int l_pack = ROUND_UP(headDim, mAlignHDK);
std::set<std::string> buildOptions;
int biasType = 0;
std::vector<cl::Buffer> bufferVec = {openCLBuffer(mTempQ.get()), openCLBuffer(mTempK.get()), openCLBuffer(mTempQK.get())};
if(mHasMask) {
bufferVec.emplace_back(openCLBuffer(mTempMask.get()));
}
if(mIsAddMask) {
biasType = 2;
} else if(mHasMask) {
biasType = 5;// int value mask
}
uint32_t layout = 14; // 10 means mix-precision, 4 means layout
auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)(biasType + 10*(group_size-1))}, bufferVec, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
int tileM = MWG;
int tileN = NWG;
int localM = MDIMC;
int localN = NDIMC;
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
buildOptions.emplace("-DONLY_HAVE_ALPHA");
if(biasType >= 1) {
buildOptions.emplace("-DBIAS_TYPE=" + std::to_string(biasType));
}
buildOptions.emplace("-DPRECISION_COMPUTE=float -DCONVERT_PRECISION_COMPUTE=convert_float");
buildOptions.emplace("-DPRECISION_COMPUTE2=float2 -DCONVERT_PRECISION_COMPUTE2=convert_float2");
buildOptions.emplace("-DPRECISION_COMPUTE4=float4 -DCONVERT_PRECISION_COMPUTE4=convert_float4");
buildOptions.emplace("-DPRECISION_COMPUTE8=float8 -DCONVERT_PRECISION_COMPUTE8=convert_float8");
buildOptions.emplace("-DPRECISION_COMPUTE16=float16 -DCONVERT_PRECISION_COMPUTE16=convert_float16");
mKernel_qk_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGwsQkVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
mLwsQkVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
float alpha = scale;
float beta = 0.0f;
int batch_offset_a = e_pack * l_pack;
int batch_offset_b = h_pack * l_pack;
int batch_offset_c = e_pack_piece * h_pack;
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
int base_ptr_offset[4] = {e_pack_piece * seq_idx, 0, 0, batch_offset_c * seq_idx};
int stride[4] = {e_pack, h_pack, h_pack, h_pack};
int group[4] = {1, group_size, 1, loop};
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece));
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, alpha);
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, beta);
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQ.get()));
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempK.get()));
if(mHasMask) {
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempMask.get()));
}
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, batch_offset);
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, base_ptr_offset);
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, stride);
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, group);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qk Kernel");
mOpenCLBackend->recordKernel3d(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx]);
}
// softmax
{
// QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
// Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
// axis : 2 (last dim)
int softmaxShape[4];
softmaxShape[0] = batch*numHead;
softmaxShape[1] = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum;
softmaxShape[2] = ROUND_UP(mKvSeqlen, mAlignKV);
auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize), static_cast<uint32_t>(256));
int localSize = 64;
std::set<std::string> buildOption;
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
mKernel_softmax_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "softmax_inside", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
mGwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(softmaxShape[1]), static_cast<uint32_t>(softmaxShape[0])};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][0]);
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][1]);
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][2]);
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mKvSeqlen);
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, softmaxShape);
MNN_CHECK_CL_SUCCESS(ret, "setArg Attention softmax");
mLwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), 1, 1};
mOpenCLBackend->recordKernel3d(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx]);
}
{
// Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
// Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum]
int loop = batch * numHead;
int transDimW = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum;
int transDimH = ROUND_UP(mKvSeqlen, mAlignKV);
std::set<std::string> buildOptions;
mKernel_trans_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "trans_3d_buf", buildOptions, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernel_trans_vec[seq_idx]));
mGwsTransVec[seq_idx] = {(uint32_t)transDimW/8, (uint32_t)transDimH/8, (uint32_t)(loop)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][0]);
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][1]);
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][2]);
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, loop);
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimW);
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimH);
MNN_CHECK_CL_SUCCESS(ret, "setArg Attention transpose");
mLwsTransVec[seq_idx] = localWS3DDefault(mGwsTransVec[seq_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "trans_3d_buf", mKernel_trans_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first;
mGwsTransVec[seq_idx][0] = ROUND_UP(mGwsTransVec[seq_idx][0], std::max((uint32_t)1, mLwsTransVec[seq_idx][0]));
mGwsTransVec[seq_idx][1] = ROUND_UP(mGwsTransVec[seq_idx][1], std::max((uint32_t)1, mLwsTransVec[seq_idx][1]));
mGwsTransVec[seq_idx][2] = ROUND_UP(mGwsTransVec[seq_idx][2], std::max((uint32_t)1, mLwsTransVec[seq_idx][2]));
mOpenCLBackend->recordKernel3d(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx]);
}
// qk * value
{
// Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M]
// V : [Batch * numHead / group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDN)] -> [B, K, N]
// QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, N, M]
int loop = batch * numHead;
int e_pack = ROUND_UP(seqlen, mAlignQ);
int e_pack_piece = e_pack / mQseqSplitNum;
int l_pack = ROUND_UP(mKvSeqlen, mAlignKV);
int h_pack = ROUND_UP(headDim, mAlignHDN);
std::set<std::string> buildOptions;
uint32_t layout = 0;
auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)0}, {openCLBuffer(mTempQK.get()), openCLBuffer(mTempV.get()), openCLBuffer(mTempQKV.get())}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
int tileM = MWG;
int tileN = NWG;
int localM = MDIMC;
int localN = NDIMC;
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
mKernel_qkv_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGwsQkvVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
mLwsQkvVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
float alpha = 1.0f;
float beta = 0.0f;
int batch_offset_a = e_pack_piece * l_pack;
int batch_offset_b = h_pack * l_pack;
int batch_offset_c = e_pack * h_pack;
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
int base_ptr_offset[4] = {0, 0, e_pack_piece * seq_idx, 0};
int stride[4] = {e_pack_piece, h_pack, e_pack, h_pack};
int group[4] = {1, group_size, 1, loop};
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, alpha);
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, beta);
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempV.get()));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQKV.get()));
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, batch_offset);
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, base_ptr_offset);
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, stride);
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, group);
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qkv Kernel");
mOpenCLBackend->recordKernel3d(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx]);
}
}
seq_idx = 0;
// transpose to output
{
// QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ)] -> [B, N, M]
// output: [batch, seqLenQ/4, headNum, headDim, seqLenQ_4]
std::set<std::string> buildOption;
mKernel_clip_vec[seq_idx] = runtime->buildKernel("attention_buf", "qkv_transpose_output", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_clip_vec[seq_idx]));
mGwsClipVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(headDim, 4)), static_cast<uint32_t>(batch*numHead)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][0]);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][1]);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][2]);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQKV.get()));
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignQ);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignHDN);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, seqlen);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, numHead);
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, headDim);
mLwsClipVec[seq_idx] = localWS3DDefault(mGwsClipVec[seq_idx], maxWorkGroupSize, runtime, "qkv_transpose_output", mKernel_clip_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first;
mGwsClipVec[seq_idx][0] = ROUND_UP(mGwsClipVec[seq_idx][0], std::max((uint32_t)1, mLwsClipVec[seq_idx][0]));
mGwsClipVec[seq_idx][1] = ROUND_UP(mGwsClipVec[seq_idx][1], std::max((uint32_t)1, mLwsClipVec[seq_idx][1]));
mGwsClipVec[seq_idx][2] = ROUND_UP(mGwsClipVec[seq_idx][2], std::max((uint32_t)1, mLwsClipVec[seq_idx][2]));
MNN_CHECK_CL_SUCCESS(ret, "setArg qkv_transpose_output");
mOpenCLBackend->recordKernel3d(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx]);
}
mOpenCLBackend->endRecord(mRecording);
return NO_ERROR;
}
ErrorCode AttentionBufExecution::prefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto query = inputs[0];
auto key = inputs[1];
auto value = inputs[2];
auto shape = query->shape();
int batch = shape[0];
int seqlen = shape[1];
int numHead = shape[2];
int kvNumHead = key->shape()[2];
int headDim = shape[3];
int groupSize = numHead / kvNumHead;
float scale = 1.0 / sqrt(headDim);
int maskKvlen = mKvSeqlen;
if(mHasMask) {
auto mask = inputs[3];
auto mask_shape = mask->shape();
maskKvlen = mask_shape[3];
}
mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC);
cl::Buffer keyBuffer, valueBuffer;
if(mNeedKvCache) {
keyBuffer = *mKVCacheCLManager->key();
valueBuffer = *mKVCacheCLManager->value();
} else {
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
keyBuffer = openCLBuffer(mTempK.get());
valueBuffer = openCLBuffer(mTempV.get());
}
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
{
// rearrange query
std::set<std::string> buildOption;
mKernel_rearrangeQ = runtime->buildKernel("attention_buf", "rearrange_q", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeQ));
mGlobalWorkSizeRearrgQ = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
static_cast<uint32_t>(numHead*batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[0]);
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[1]);
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[2]);
ret |= mKernel_rearrangeQ->get().setArg(index++, openCLBuffer(query));
ret |= mKernel_rearrangeQ->get().setArg(index++, openCLBuffer(mTempQ.get()));
ret |= mKernel_rearrangeQ->get().setArg(index++, seqlen);
ret |= mKernel_rearrangeQ->get().setArg(index++, headDim);
ret |= mKernel_rearrangeQ->get().setArg(index++, numHead);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_q");
mLocalWorkSizeRearrgQ = localWS3DDefault(mGlobalWorkSizeRearrgQ, maxWorkGroupSize, runtime, "rearrange_q", mKernel_rearrangeQ, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeRearrgQ[0] = ROUND_UP(mGlobalWorkSizeRearrgQ[0], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[0]));
mGlobalWorkSizeRearrgQ[1] = ROUND_UP(mGlobalWorkSizeRearrgQ[1], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[1]));
mGlobalWorkSizeRearrgQ[2] = ROUND_UP(mGlobalWorkSizeRearrgQ[2], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[2]));
mOpRecordUpdateInfo.emplace_back(&mRgQUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ);
}
{
// rearrange key
std::set<std::string> buildOption;
buildOption.emplace("-DOPENCL_PREFILL_ATTENTION");
mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange));
mGlobalWorkSizeRearrg = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
static_cast<uint32_t>(kvNumHead * batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]);
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]);
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]);
ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key));
ret |= mKernel_rearrange->get().setArg(index++, keyBuffer);
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_rearrange->get().setArg(index++, seqlen);
ret |= mKernel_rearrange->get().setArg(index++, kvNumHead);
ret |= mKernel_rearrange->get().setArg(index++, numHead);
ret |= mKernel_rearrange->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k");
mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0]));
mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1]));
mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2]));
if(mNeedKvCache) {
mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
}
mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo);
}
{
// matmul qk
std::set<std::string> buildOption;
if(mIsAddMask){
buildOption.emplace("-DADD_MASK");
} else if(mHasMask) {
buildOption.emplace("-DSET_MASK");
}
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize));
mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_div_mask_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead*batch)};
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk));
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]);
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]);
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[2]);
ret |= mKernel_qk->get().setArg(index++, openCLBuffer(mTempQ.get()));
ret |= mKernel_qk->get().setArg(index++, keyBuffer);
if(mHasMask) {
ret |= mKernel_qk->get().setArg(index++, openCLBuffer(inputs[3]));
}
ret |= mKernel_qk->get().setArg(index++, openCLBuffer(mTempQK.get()));
ret |= mKernel_qk->get().setArg(index++, scale);
ret |= mKernel_qk->get().setArg(index++, seqlen);
ret |= mKernel_qk->get().setArg(index++, maskKvlen);
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_qk->get().setArg(index++, numHead);
ret |= mKernel_qk->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_div_mask_prefill");
mLocalWorkSizeQk = localWS3DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_div_mask_prefill", mKernel_qk, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
mGlobalWorkSizeQk[2] = ROUND_UP(mGlobalWorkSizeQk[2], std::max((uint32_t)1, mLocalWorkSizeQk[2]));
if(mNeedKvCache) {
mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
}
if(mHasMask){
mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKvSeqlen), &mKvSeqlen});
mQkUpdateInfo.update_kernel_args.push_back({0, 11, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
}else{
mQkUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(mKvSeqlen), &mKvSeqlen});
mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
}
mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo);
}
{
// softmax
int inside = ROUND_UP(seqlen, 4);
int outside = numHead * batch;
int localSize = 64;
std::set<std::string> buildOption;
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_v4_buf", buildOption, mOpenCLBackend->getPrecision());
mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(UP_DIV(inside, 4)), static_cast<uint32_t>(outside)};
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax));
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]);
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]);
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]);
ret |= mKernel_softmax->get().setArg(index++, openCLBuffer(mTempQK.get()));
ret |= mKernel_softmax->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_softmax->get().setArg(index++, inside);
ret |= mKernel_softmax->get().setArg(index++, outside);
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
MNN_CHECK_CL_SUCCESS(ret, "setArg softmax");
mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1};
if(localSize == 1){
mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel()).first;
}
mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0]));
mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1]));
mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2]));
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax);
}
{
// rearrange value
std::set<std::string> buildOption;
buildOption.emplace("-DOPENCL_PREFILL_ATTENTION");
mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV));
mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \
static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
static_cast<uint32_t>(kvNumHead * batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]);
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]);
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]);
ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value));
ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer);
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_rearrangeV->get().setArg(index++, seqlen);
ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead);
ret |= mKernel_rearrangeV->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v");
mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0]));
mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1]));
mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2]));
if(mNeedKvCache) {
mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
}
mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo);
}
// qk * value
{
std::set<std::string> buildOption;
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize));
mKernel_qkv = runtime->buildKernel("attention_buf", "matmul_qkv_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qkv));
mGlobalWorkSizeQkv = {static_cast<uint32_t>(UP_DIV(headDim, 8)), static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(numHead*batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]);
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]);
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[2]);
ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
ret |= mKernel_qkv->get().setArg(index++, valueBuffer);
ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0]));
ret |= mKernel_qkv->get().setArg(index++, seqlen);
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_qkv->get().setArg(index++, numHead);
ret |= mKernel_qkv->get().setArg(index++, kvNumHead);
ret |= mKernel_qkv->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_prefill");
mLocalWorkSizeQkv = localWS3DDefault(mGlobalWorkSizeQkv, maxWorkGroupSize, runtime, "matmul_qkv_prefill", mKernel_qkv, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0]));
mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1]));
mGlobalWorkSizeQkv[2] = ROUND_UP(mGlobalWorkSizeQkv[2], std::max((uint32_t)1, mLocalWorkSizeQkv[2]));
if(mNeedKvCache) {
mQkvUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
}
mQkvUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
mQkvUpdateInfo.update_kernel_args.push_back({0, 8, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo);
}
mOpenCLBackend->endRecord(mRecording);
return NO_ERROR;
}
ErrorCode AttentionBufExecution::decodeResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto query = inputs[0];
auto key = inputs[1];
auto value = inputs[2];
auto shape = query->shape();
int batch = shape[0];
int seqlen = shape[1];
int numHead = shape[2];
int kvNumHead = key->shape()[2];
int headDim = shape[3];
int group_size = numHead / kvNumHead;
float scale = 1.0 / sqrt(headDim);
int mask_seqlen = seqlen;
int mask_kvlen = seqlen;
if(mHasMask) {
auto mask = inputs[3];
auto mask_shape = mask->shape();
mask_seqlen = mask_shape[2];
mask_kvlen = mask_shape[3];
}
cl::Buffer keyBuffer, valueBuffer;
if(mNeedKvCache) {
keyBuffer = *mKVCacheCLManager->key();
valueBuffer = *mKVCacheCLManager->value();
} else {
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
keyBuffer = openCLBuffer(mTempK.get());
valueBuffer = openCLBuffer(mTempV.get());
}
mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
{
// rearrange key
std::set<std::string> buildOption;
mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange));
mGlobalWorkSizeRearrg = {static_cast<uint32_t>(1), \
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
static_cast<uint32_t>(kvNumHead * batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]);
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]);
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]);
ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key));
ret |= mKernel_rearrange->get().setArg(index++, keyBuffer);
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_rearrange->get().setArg(index++, seqlen);
ret |= mKernel_rearrange->get().setArg(index++, kvNumHead);
ret |= mKernel_rearrange->get().setArg(index++, numHead);
ret |= mKernel_rearrange->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k");
mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0]));
mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1]));
mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2]));
if(mNeedKvCache) {
mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo);
} else {
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg);
}
}
{
// matmul qk
std::set<std::string> buildOption;
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size));
mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_decode", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead)};
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk));
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]);
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]);
ret |= mKernel_qk->get().setArg(index++, openCLBuffer(query));
ret |= mKernel_qk->get().setArg(index++, keyBuffer);
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
ret |= mKernel_qk->get().setArg(index++, scale);
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_qk->get().setArg(index++, numHead);
ret |= mKernel_qk->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_decode");
mLocalWorkSizeQk = localWS2DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_decode", mKernel_qk, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
if(mNeedKvCache) {
mQkUpdateInfo.update_kernel_args.push_back({0, 0, sizeof(mGlobalWorkSizeQk0), &mGlobalWorkSizeQk0});
mQkUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
mQkUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKvSeqlen), &mKvSeqlen});
mQkUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mQkGlobal_size[0] = mGlobalWorkSizeQk[0];
mQkGlobal_size[1] = mGlobalWorkSizeQk[1];
mQkUpdateInfo.update_global_size.push_back({0, mQkGlobal_size});
mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo);
mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo);
} else {
mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk);
}
}
{
// softmax
int inside = 1;
int outside = numHead;
int localSize = 64;
std::set<std::string> buildOption;
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_in1_buf", buildOption, mOpenCLBackend->getPrecision());
mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(inside), static_cast<uint32_t>(outside)};
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax));
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]);
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]);
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]);
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
ret |= mKernel_softmax->get().setArg(index++, inside);
ret |= mKernel_softmax->get().setArg(index++, outside);
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
MNN_CHECK_CL_SUCCESS(ret, "setArg softmax");
mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1};
if(localSize == 1){
mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel()).first;
}
mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0]));
mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1]));
mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2]));
if(mNeedKvCache) {
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, &mSoftMaxUpdateInfo);
} else {
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax);
}
}
{
// rearrange value
std::set<std::string> buildOption;
mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV));
mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \
static_cast<uint32_t>(1), \
static_cast<uint32_t>(kvNumHead * batch)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]);
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]);
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]);
ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value));
ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer);
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_rearrangeV->get().setArg(index++, seqlen);
ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead);
ret |= mKernel_rearrangeV->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v");
mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel()).first;
mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0]));
mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1]));
mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2]));
if(mNeedKvCache) {
mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo);
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo);
} else {
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV);
}
}
// qk * value
{
std::set<std::string> buildOption;
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size));
const int total_kernel = 2;
std::string kernelName[total_kernel] = {"matmul_qkv_decode_b4", "matmul_qkv_decode_b8"};
std::string unroll[total_kernel] = {"-DLOOP_UNROLL_4", "-DLOOP_UNROLL_8"};
int itemC[total_kernel] = {4, 8};
int actual_kernel = 2;
std::shared_ptr<KernelWrap> kernel[total_kernel * total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel * total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel * total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
for (int i = 0; i < actual_kernel; i++) {
for(int j = 0; j < actual_kernel; j++){
int knl_idx = i * total_kernel + j;
auto option = buildOption;
option.emplace(unroll[j]);
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("attention_buf", kernelName[i], option, mOpenCLBackend->getPrecision());
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(headDim, itemC[i])), static_cast<uint32_t>(numHead)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
ret |= kernel[knl_idx]->get().setArg(index++, valueBuffer);
ret |= kernel[knl_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
ret |= kernel[knl_idx]->get().setArg(index++, mKvSeqlen);
ret |= kernel[knl_idx]->get().setArg(index++, mKeyValueMaxlen);
ret |= kernel[knl_idx]->get().setArg(index++, numHead);
ret |= kernel[knl_idx]->get().setArg(index++, kvNumHead);
ret |= kernel[knl_idx]->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode");
std::pair<std::vector<uint32_t>, int> retTune;
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[i] + unroll[j], kernel[knl_idx], mOpenCLBackend->getCLTuneLevel());
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSizeQkv = {retTune.first[0], retTune.first[1]};
}
}
}
int min_index = min_cost.second / 2;
int min_index_unroll = min_cost.second % 2;
mGlobalWorkSizeQkv = {globalWorkSize[min_cost.second][0], globalWorkSize[min_cost.second][1]};
buildOption.emplace(unroll[min_index_unroll]);
mKernel_qkv = runtime->buildKernel("attention_buf", kernelName[min_index], buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]);
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]);
ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
ret |= mKernel_qkv->get().setArg(index++, valueBuffer);
ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0]));
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
ret |= mKernel_qkv->get().setArg(index++, numHead);
ret |= mKernel_qkv->get().setArg(index++, kvNumHead);
ret |= mKernel_qkv->get().setArg(index++, headDim);
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode");
mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0]));
mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1]));
if(mNeedKvCache) {
mQkvUpdateInfo.update_kernel_args.push_back({0, 2, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
mQkvUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
mQkvUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mKvSeqlen), &mKvSeqlen});
mQkvUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo);
mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo);
} else {
mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv);
}
}
mOpenCLBackend->endRecord(mRecording);
return NO_ERROR;
}
// [Batch, q_seqlen, HeadNum, HeadDim] -> [Batch, kv_seqlen, HeadNum, HeadDim]
ErrorCode AttentionBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mOpenCLBackend->startRecord(mRecording);
auto shape = inputs[0]->shape();
int seqlen = shape[1];
if(mNeedKvCache) {
// if has kv_cache, default has mask
MNN_ASSERT(inputs.size() > 3);
}
mHasMask = inputs.size() > 3;
mIsDecode = seqlen == 1;
// reset updateArgs variable and kernel vector
init();
// handle kv_cache, like copy kv
handleKVCache(inputs, outputs);
mLongPrefill = false;
if(mIsDecode) {
return decodeResize(inputs, outputs);
} else {
if(seqlen > 512 && mPastKvSeqlen == 0){
mLongPrefill = true;
return longPrefillResize(inputs, outputs);
}else{
return prefillResize(inputs, outputs);
}
}
return NO_ERROR;
}
ErrorCode AttentionBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start AttentionBufExecution onExecute !\n");
#endif
if(mNeedKvCache && mIsDecode){
mKVCacheCLManager->reallocKVCache(mMeta);
}
UpdateArgs(inputs, outputs);
#ifdef ENABLE_OPENCL_TIME_PROFILER
if(mLongPrefill) {
int seq_idx = 0;
cl::Event event0, event1, event2, event3, event4, event5, event6;
run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event0);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_qkv", event0});
if(mHasMask) {
run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event1);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_mask", event1});
}
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event2);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event2});
run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event3);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event3});
run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event4);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"transpose_softmax", event4});
run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event5);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event5});
}
seq_idx = 0;
run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event6);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_output", event6});
} else{
if(mIsDecode){
cl::Event event0, event1, event2, event3, event4;
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event0);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event0});
runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event1);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event1});
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event2);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event2});
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event3);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event3});
runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event4);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event4});
}else{
cl::Event event0, event1, event2, event3, event4, event5;
run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime(), &event0);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_q", event0});
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event1);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event1});
run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event2);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event2});
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event3);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event3});
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event4);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event4});
run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event5);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event5});
}
}
#else
if(mOpenCLBackend->isUseRecordQueue()){
mOpenCLBackend->addRecord(mRecording, mOpRecordUpdateInfo);
#ifdef LOG_VERBOSE
MNN_PRINT("End AttentionBufExecution onExecute... \n");
#endif
return NO_ERROR;
}
if(mLongPrefill) {
int seq_idx = 0;
run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
if(mHasMask) {
run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
}
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
}
seq_idx = 0;
run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
} else{
if(mIsDecode){
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime());
runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime());
runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime());
}else{
run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime());
}
}
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end AttentionBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
AttentionBufExecution::AttentionBufExecution(const MNN::Op *op, Backend* backend, bool kv_cahce) : CommonExecution(backend, op) {
mNeedKvCache = kv_cahce;
mKVCacheCLManager.reset(new KVCacheCLManager(backend, kv_cahce));
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta);
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
}
AttentionBufExecution::AttentionBufExecution(std::shared_ptr<KVCacheCLManager> manager, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op), mKVCacheCLManager(manager) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta);
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
}
bool AttentionBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
*dst = new AttentionBufExecution(mKVCacheCLManager, op, bn);
return true;
}
class AttentionBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto param = op->main_as_AttentionParam();
return new AttentionBufExecution(op, backend, param->kv_cache());
}
};
REGISTER_OPENCL_OP_CREATOR_TRANSFORMER(AttentionBufCreator, OpType_Attention, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif/* MNN_SUPPORT_TRANSFORMER_FUSE */