source/backend/opencl/execution/buffer/AttentionBufExecution.cpp (1,392 lines of code) (raw):

// // SoftmaxBufExecution.cpp // MNN // // Created by MNN on 2024/04/11. // Copyright © 2018, Alibaba Group Holding Limited // #ifdef MNN_SUPPORT_TRANSFORMER_FUSE #include "backend/opencl/execution/buffer/AttentionBufExecution.hpp" #include <fstream> namespace MNN { namespace OpenCL { KVCacheCLManager::KVCacheCLManager(Backend *backend, bool kv_cahce) : mKVCache(kv_cahce){ mOpenCLBackend = static_cast<OpenCLBackend *>(backend); } void KVCacheCLManager::allocKVCache(const KVMeta* meta, bool isDecodeResize) { if (!mKVCache) { return; } mPastLength = meta != nullptr ? meta->previous : 0; if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){ mByte = 2; } reallocKVCache(meta, isDecodeResize); } bool KVCacheCLManager::reallocKVCache(const KVMeta* meta, bool isDecodeResize) { if (!mKVCache) { return false; } int kvSeqlen = meta->previous + meta->add - meta->remove + meta->computeReverseSize(); int start = mPastLength - meta->remove; cl_int res; // latest length larger than maxLen if(kvSeqlen > mMaxLength){ int copylen = mPastLength - meta->remove + meta->computeReverseSize(); bool needCopy = copylen > 0; size_t oldSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte; size_t oldMaxlen = ROUND_UP(mMaxLength, 4); mMaxLength = kvSeqlen + mExpandChunk; size_t newMaxlen = ROUND_UP(mMaxLength, 4); size_t bufferSize = UP_DIV(mMaxLength, 4) * mKvNumHead * mHeadDim * 4 * mByte; // past_key: [1, numhead, headdim, maxlen] auto newKey = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize); // past_value: [1, numhead, maxlen, headdim] auto newValue = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize); if(needCopy){ // copy key { size_t oldMaxlenSize = oldMaxlen * mByte; size_t newMaxlenSize = newMaxlen * mByte; char *newKeyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newKey, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res); char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res); if(newKeyPtr != nullptr && keyPtr != nullptr && res == CL_SUCCESS){ for(int i = 0; i < mKvNumHead * mHeadDim; ++i){ ::memcpy(newKeyPtr + i * newMaxlenSize, keyPtr + i * oldMaxlenSize, oldMaxlenSize); } }else{ MNN_ERROR("Map error key_ptr == nullptr \n"); MNN_ASSERT(false); } mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newKey, newKeyPtr); mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastKey.get(), keyPtr); } // copy value { char *newValuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newValue, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res); char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res); if(newValuePtr != nullptr && valuePtr != nullptr && res == CL_SUCCESS){ for(int i = 0; i < mKvNumHead; ++i){ for(int j = 0; j < copylen; ++j){ ::memcpy(newValuePtr + (i * newMaxlen + j) * mHeadDim * mByte, valuePtr + (i * oldMaxlen + j) * mHeadDim * mByte, mHeadDim * mByte); } } }else{ MNN_ERROR("Map error value_ptr == nullptr \n"); MNN_ASSERT(false); } mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newValue, newValuePtr); mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastValue.get(), valuePtr); } } mPastKey.reset(newKey); mPastValue.reset(newValue); // resize phase don't update mPastLength value, excute phase will update it if(false == isDecodeResize){ mPastLength = start; } } // Remove // resize phase don't remove kvcache, excute phase will do it if(false == isDecodeResize){ if (0 == meta->n_reserve) { mPastLength = start; return true; } size_t pastkvSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte; char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res); char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res); // TODO: need to ensure reserve info is sorted for (int n = 0; n < meta->n_reserve; ++n) { auto begin = meta->reserve[2 * n]; auto length = meta->reserve[2 * n + 1]; // past_key : [mKvNumHead, mHeadDim, mMaxLength] // past_value : [mKvNumHead, mMaxLength, mHeadDim] auto copySrcIndex = start + begin; auto copyDstIndex = start; for(int i = 0; i < mKvNumHead * mHeadDim; i++) { ::memcpy(keyPtr + (i * mMaxLength + copyDstIndex) * mByte, keyPtr + (i * mMaxLength + copySrcIndex) * mByte, length * mByte); } for(int i = 0; i < mKvNumHead; i++) { for(int j = 0; j < length; j++) { ::memcpy(valuePtr + (i * mMaxLength + copyDstIndex + j) * mHeadDim * mByte, valuePtr + (i * mMaxLength + copySrcIndex + j) * mHeadDim * mByte, mHeadDim * mByte); } } start += length; } mPastLength = (int)start; } return true; } void AttentionBufExecution::handleKVCache(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { if(mHasMask) { auto mask = inputs[3]; mIsAddMask = (mask->getType() == halide_type_of<float>()); } auto query = inputs[0]; auto key = inputs[1]; auto shape = query->shape(); int batch = shape[0]; int seqlen = shape[1]; int numHead = shape[2]; int kvNumHead = key->shape()[2]; int headDim = shape[3]; if(!mNeedKvCache) { mPastKvSeqlen = 0; mKvSeqlen = seqlen; mKeyValueMaxlen = ROUND_UP(seqlen, 4); mDecodeTmpMaxlen = ROUND_UP(seqlen, 4); return; } MNN_ASSERT(inputs.size() >= 4); auto mask = inputs[3]; auto mask_shape = mask->shape(); int mask_seqlen = mask_shape[2]; int maskKvlen = mask_shape[3]; mKVCacheCLManager->setArgs(numHead, kvNumHead, headDim); mKVCacheCLManager->allocKVCache(mMeta, mIsDecode); mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4); mDecodeTmpMaxlen = mKeyValueMaxlen; mPastKvSeqlen = mKVCacheCLManager->pastKvLength(); mKvSeqlen = mPastKvSeqlen + seqlen; } ErrorCode AttentionBufExecution::init() { if(!mNeedKvCache) { return NO_ERROR; } //clear update arg vector, if prefill and decode use the same one mOpRecordUpdateInfo.clear(); mRgQUpdateInfo.update_kernel_args.clear(); mRgQUpdateInfo.update_global_size.clear(); mRgQUpdateInfo.update_local_size.clear(); mRgUpdateInfo.update_kernel_args.clear(); mRgUpdateInfo.update_global_size.clear(); mRgUpdateInfo.update_local_size.clear(); mQkUpdateInfo.update_kernel_args.clear(); mQkUpdateInfo.update_global_size.clear(); mQkUpdateInfo.update_local_size.clear(); mSoftMaxUpdateInfo.update_kernel_args.clear(); mSoftMaxUpdateInfo.update_global_size.clear(); mSoftMaxUpdateInfo.update_local_size.clear(); mRgVUpdateInfo.update_kernel_args.clear(); mRgVUpdateInfo.update_global_size.clear(); mRgVUpdateInfo.update_local_size.clear(); mQkvUpdateInfo.update_kernel_args.clear(); mQkvUpdateInfo.update_global_size.clear(); mQkvUpdateInfo.update_local_size.clear(); return NO_ERROR; } ErrorCode AttentionBufExecution::UpdateArgs(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){ if(!mNeedKvCache) { return NO_ERROR; } auto query = inputs[0]; auto key = inputs[1]; auto value = inputs[2]; auto mask = inputs[3]; auto shape = query->shape(); int batch = shape[0]; int seqlen = shape[1]; int numHead = shape[2]; int kvNumHead = key->shape()[2]; int headDim = shape[3]; int group_size = numHead / kvNumHead; float scale = 1.0 / sqrt(headDim); auto mask_shape = mask->shape(); int mask_seqlen = mask_shape[2]; int maskKvlen = mask_shape[3]; mPastKvSeqlen = mKVCacheCLManager->pastKvLength(); mKvSeqlen = mKVCacheCLManager->pastKvLength() + seqlen; mKVCacheCLManager->addKvLength(seqlen); // prefill if(mIsDecode == false){ // key value static memory has been changed, need reset args if(mKeyValueMaxlen != ROUND_UP(mKVCacheCLManager->maxLength(), 4)){ mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4); #ifndef ENABLE_OPENCL_TIME_PROFILER if(mOpenCLBackend->isUseRecordQueue()){ if(mLongPrefill){ mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))(); mQkUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))(); mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))(); mQkvUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))(); }else{ mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))(); mQkUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))(); mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))(); mQkvUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))(); } } else { #endif if(mLongPrefill){ // rearrange key value cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange_vec[0]->get().setArg(9, *mKVCacheCLManager->key()); ret |= mKernel_rearrange_vec[0]->get().setArg(10, *mKVCacheCLManager->value()); ret |= mKernel_rearrange_vec[0]->get().setArg(14, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k"); }else{ { // rearrange key cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange->get().setArg(4, *mKVCacheCLManager->key()); ret |= mKernel_rearrange->get().setArg(5, mPastKvSeqlen); ret |= mKernel_rearrange->get().setArg(6, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k"); } { // matmul qk cl_int ret = CL_SUCCESS; ret |= mKernel_qk->get().setArg(4, *mKVCacheCLManager->key()); ret |= mKernel_qk->get().setArg(10, mKvSeqlen); ret |= mKernel_qk->get().setArg(11, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode"); } { // softmax cl_int ret = CL_SUCCESS; ret |= mKernel_qk->get().setArg(7, mKvSeqlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax"); } { cl_int ret = CL_SUCCESS; ret |= mKernel_rearrangeV->get().setArg(4, *mKVCacheCLManager->value()); ret |= mKernel_rearrangeV->get().setArg(5, mPastKvSeqlen); ret |= mKernel_rearrangeV->get().setArg(6, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v"); } // qk * value { cl_int ret = CL_SUCCESS; ret |= mKernel_qkv->get().setArg(4, *mKVCacheCLManager->value()); ret |= mKernel_qkv->get().setArg(7, mKvSeqlen); ret |= mKernel_qkv->get().setArg(8, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode"); } } #ifndef ENABLE_OPENCL_TIME_PROFILER } #endif } return NO_ERROR; } // Decode mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4); if(mKvSeqlen > mDecodeTmpMaxlen){ mDecodeTmpMaxlen = mKeyValueMaxlen; mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead})); mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead})); mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION); } mGlobalWorkSizeQk0 = UP_DIV(mKvSeqlen, 4); mQkGlobal_size[0] = ROUND_UP(mGlobalWorkSizeQk0, std::max((uint32_t)1, mLocalWorkSizeQk[0])); mGlobalWorkSizeQk[0] = mQkGlobal_size[0]; #ifndef ENABLE_OPENCL_TIME_PROFILER // use record, only update args if(mOpenCLBackend->isUseRecordQueue()){ mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))(); mQkUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->key()))(); mQkUpdateInfo.update_kernel_args[2].arg_value = &openCLDeferBuffer(mTempQK.get())(); mSoftMaxUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempQK.get())(); mSoftMaxUpdateInfo.update_kernel_args[1].arg_value = &openCLDeferBuffer(mTempSoftMax.get())(); mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))(); mQkvUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempSoftMax.get())(); mQkvUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->value()))(); } else { #endif // not use record, need update args by using setArg { // rearrange key uint32_t index = 4; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange->get().setArg(index++, *mKVCacheCLManager->key()); ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k"); } { // matmul qk uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk0); index++; index++; ret |= mKernel_qk->get().setArg(index++, *mKVCacheCLManager->key()); ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get())); index++; ret |= mKernel_qk->get().setArg(index++, mKvSeqlen); ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen); mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0])); mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1])); MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode"); } { // softmax uint32_t index = 3; cl_int ret = CL_SUCCESS; ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get())); ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get())); index++; index++; ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax"); } { uint32_t index = 4; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrangeV->get().setArg(index++, *mKVCacheCLManager->value()); ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v"); } // qk * value { uint32_t index = 2; cl_int ret = CL_SUCCESS; ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get())); ret |= mKernel_qkv->get().setArg(index++, *mKVCacheCLManager->value()); index++; ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen); ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode"); } #ifndef ENABLE_OPENCL_TIME_PROFILER } #endif return NO_ERROR; } int AttentionBufExecution::getLocalSize(int size, int maxGroupSize){ int local_size = 1; while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){ local_size *= 2; } return local_size; } ErrorCode AttentionBufExecution::longPrefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){ auto query = inputs[0]; auto key = inputs[1]; auto value = inputs[2]; auto runtime = mOpenCLBackend->getOpenCLRuntime(); auto shape = query->shape(); int batch = shape[0]; int seqlen = shape[1]; int numHead = shape[2]; int kvNumHead = key->shape()[2]; int headDim = shape[3]; int group_size = numHead / kvNumHead; float scale = 1.0 / sqrt(headDim); mAlignQ = 32; mAlignKV = 32; mAlignHDK = 4; mAlignHDN = 32; float useMemorySize = 1.0 * ROUND_UP(seqlen, mAlignQ) / 1024.0 * ROUND_UP(seqlen, mAlignKV) / 1024.0 * batch * numHead; // elementSize larger than 32M if(useMemorySize > 32.0) { mQseqSplitNum = useMemorySize >= 256.0 ? 8 : ((useMemorySize < 128.0) ? 2 : 4); } mKernel_rearrange_vec.resize(1); mGwsRearrgVec.resize(1); mLwsRearrgVec.resize(1); mKernel_mask_vec.resize(1); mGwsMaskVec.resize(1); mLwsMaskVec.resize(1); mKernel_qk_vec.resize(mQseqSplitNum); mGwsQkVec.resize(mQseqSplitNum); mLwsQkVec.resize(mQseqSplitNum); mKernel_softmax_vec.resize(mQseqSplitNum); mGwsSoftMaxVec.resize(mQseqSplitNum); mLwsSoftMaxVec.resize(mQseqSplitNum); mKernel_trans_vec.resize(mQseqSplitNum); mGwsTransVec.resize(mQseqSplitNum); mLwsTransVec.resize(mQseqSplitNum); mKernel_qkv_vec.resize(mQseqSplitNum); mGwsQkvVec.resize(mQseqSplitNum); mLwsQkvVec.resize(mQseqSplitNum); mKernel_clip_vec.resize(1); mGwsClipVec.resize(1); mLwsClipVec.resize(1); mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDK) * batch * numHead})); mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDK) * batch * numHead})); mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDN) * batch * numHead})); if(mHasMask) { if(mIsAddMask) { mTempMask.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch})); } else { mTempMask.reset(Tensor::createDevice<uint32_t>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch})); } } mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum})); mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum})); mTempQKV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDN) * batch * numHead})); mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC); if(mHasMask) { mOpenCLBackend->onAcquireBuffer(mTempMask.get(), Backend::DYNAMIC); } mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempQKV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC); if(mHasMask) { mOpenCLBackend->onReleaseBuffer(mTempMask.get(), Backend::DYNAMIC); } mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempQKV.get(), Backend::DYNAMIC); // query: [batch, seqLenQ, headNum, headDim] -> mTempQ: [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ)] // key: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempK: [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)] // value: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempV: [batch*headNum/group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDK] // key & value -> pastKey & pastValue (copy) int seq_idx = 0; // rearrange qkv { std::set<std::string> buildOption; if((headDim % 4) != 0){ buildOption.emplace("-DHEADDIM_LEAVE"); } // generate cache for every option { auto option = buildOption; auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); } { auto option = buildOption; option.emplace("-DSEQLEN_LEAVE"); auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); } if((seqlen % 4) != 0){ buildOption.emplace("-DSEQLEN_LEAVE"); } if(mNeedKvCache) { buildOption.emplace("-DSAVE_KV"); } int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ); int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV); int head_dim_pack_qk = ROUND_UP(headDim, mAlignHDK); int head_dim_pack_v = ROUND_UP(headDim, mAlignHDN); int tile[4] = {mAlignQ, mAlignKV, mAlignHDK, mAlignHDN}; int shape[4] = {seqlen, mKvSeqlen, numHead, headDim}; int param[4] = {group_size, batch, 0, 0}; mKernel_rearrange_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_qkv", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange_vec[seq_idx])); mGwsRearrgVec[seq_idx] = {static_cast<uint32_t>(ALIMAX(UP_DIV(seq_len_pack_q, 4), UP_DIV(seq_len_pack_kv, 4))), \ static_cast<uint32_t>(ALIMAX(UP_DIV(head_dim_pack_qk, 4), UP_DIV(head_dim_pack_v, 4))), \ static_cast<uint32_t>(batch*numHead)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][0]); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][1]); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][2]); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(query)); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(key)); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(value)); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQ.get())); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempK.get())); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempV.get())); if(mNeedKvCache) { ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->key()); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->value()); } ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, tile); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, shape); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, param); ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mKeyValueMaxlen); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_qkv"); mLwsRearrgVec[seq_idx] = localWS3DDefault(mGwsRearrgVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_qkv", mKernel_rearrange_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first; mGwsRearrgVec[seq_idx][0] = ROUND_UP(mGwsRearrgVec[seq_idx][0], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][0])); mGwsRearrgVec[seq_idx][1] = ROUND_UP(mGwsRearrgVec[seq_idx][1], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][1])); mGwsRearrgVec[seq_idx][2] = ROUND_UP(mGwsRearrgVec[seq_idx][2], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][2])); if(mNeedKvCache) { mRgUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()}); mRgUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()}); } mRgUpdateInfo.update_kernel_args.push_back({0, 14, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], &mRgUpdateInfo); } // mask rearaange if(mHasMask) { std::set<std::string> buildOption; int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ); int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV); int shape[4] = {seqlen, mKvSeqlen, mAlignQ, mAlignKV}; mKernel_mask_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_mask", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_mask_vec[seq_idx])); mGwsMaskVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_pack_q, 4)), \ static_cast<uint32_t>(UP_DIV(seq_len_pack_kv, 4)), \ static_cast<uint32_t>(batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][0]); ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][1]); ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][2]); ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(inputs[3])); ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempMask.get())); ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, shape); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_mask"); mLwsMaskVec[seq_idx] = localWS3DDefault(mGwsMaskVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_mask", mKernel_mask_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first; mGwsMaskVec[seq_idx][0] = ROUND_UP(mGwsMaskVec[seq_idx][0], std::max((uint32_t)1, mLwsMaskVec[seq_idx][0])); mGwsMaskVec[seq_idx][1] = ROUND_UP(mGwsMaskVec[seq_idx][1], std::max((uint32_t)1, mLwsMaskVec[seq_idx][1])); mGwsMaskVec[seq_idx][2] = ROUND_UP(mGwsMaskVec[seq_idx][2], std::max((uint32_t)1, mLwsMaskVec[seq_idx][2])); mOpenCLBackend->recordKernel3d(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx]); } for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) { // qk matmul { // Q : [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M] // K : [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)] -> [B, K, N] // QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] -> [B, M, N] int loop = batch * numHead; int e_pack = ROUND_UP(seqlen, mAlignQ); int e_pack_piece = e_pack / mQseqSplitNum; int h_pack = ROUND_UP(mKvSeqlen, mAlignKV); int l_pack = ROUND_UP(headDim, mAlignHDK); std::set<std::string> buildOptions; int biasType = 0; std::vector<cl::Buffer> bufferVec = {openCLBuffer(mTempQ.get()), openCLBuffer(mTempK.get()), openCLBuffer(mTempQK.get())}; if(mHasMask) { bufferVec.emplace_back(openCLBuffer(mTempMask.get())); } if(mIsAddMask) { biasType = 2; } else if(mHasMask) { biasType = 5;// int value mask } uint32_t layout = 14; // 10 means mix-precision, 4 means layout auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)(biasType + 10*(group_size-1))}, bufferVec, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel()); int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13]; buildOptions.emplace("-DKWG=" + std::to_string(KWG)); buildOptions.emplace("-DKWI=" + std::to_string(KWI)); buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA)); buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC)); buildOptions.emplace("-DMWG=" + std::to_string(MWG)); buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB)); buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC)); buildOptions.emplace("-DNWG=" + std::to_string(NWG)); buildOptions.emplace("-DSA=" + std::to_string(SA)); buildOptions.emplace("-DSB=" + std::to_string(SB)); buildOptions.emplace("-DSTRM=" + std::to_string(STRM)); buildOptions.emplace("-DSTRN=" + std::to_string(STRN)); buildOptions.emplace("-DVWM=" + std::to_string(VWM)); buildOptions.emplace("-DVWN=" + std::to_string(VWN)); if(layout >= 4) { buildOptions.emplace("-DOUTPUTMN"); } int tileM = MWG; int tileN = NWG; int localM = MDIMC; int localN = NDIMC; if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) { buildOptions.emplace("-DUSE_CL_MAD=1"); buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1"); } buildOptions.emplace("-DONLY_HAVE_ALPHA"); if(biasType >= 1) { buildOptions.emplace("-DBIAS_TYPE=" + std::to_string(biasType)); } buildOptions.emplace("-DPRECISION_COMPUTE=float -DCONVERT_PRECISION_COMPUTE=convert_float"); buildOptions.emplace("-DPRECISION_COMPUTE2=float2 -DCONVERT_PRECISION_COMPUTE2=convert_float2"); buildOptions.emplace("-DPRECISION_COMPUTE4=float4 -DCONVERT_PRECISION_COMPUTE4=convert_float4"); buildOptions.emplace("-DPRECISION_COMPUTE8=float8 -DCONVERT_PRECISION_COMPUTE8=convert_float8"); buildOptions.emplace("-DPRECISION_COMPUTE16=float16 -DCONVERT_PRECISION_COMPUTE16=convert_float16"); mKernel_qk_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision()); int out_per_thread_m = tileM / localM; int out_per_thread_n = tileN / localN; mGwsQkVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)}; mLwsQkVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1}; float alpha = scale; float beta = 0.0f; int batch_offset_a = e_pack * l_pack; int batch_offset_b = h_pack * l_pack; int batch_offset_c = e_pack_piece * h_pack; int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0}; int base_ptr_offset[4] = {e_pack_piece * seq_idx, 0, 0, batch_offset_c * seq_idx}; int stride[4] = {e_pack, h_pack, h_pack, h_pack}; int group[4] = {1, group_size, 1, loop}; int idx = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece)); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack)); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack)); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, alpha); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, beta); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQ.get())); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempK.get())); if(mHasMask) { ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempMask.get())); } ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get())); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, batch_offset); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, base_ptr_offset); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, stride); ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, group); MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qk Kernel"); mOpenCLBackend->recordKernel3d(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx]); } // softmax { // QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] // Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] // axis : 2 (last dim) int softmaxShape[4]; softmaxShape[0] = batch*numHead; softmaxShape[1] = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum; softmaxShape[2] = ROUND_UP(mKvSeqlen, mAlignKV); auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize), static_cast<uint32_t>(256)); int localSize = 64; std::set<std::string> buildOption; buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize)); mKernel_softmax_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "softmax_inside", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); mGwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(softmaxShape[1]), static_cast<uint32_t>(softmaxShape[0])}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][0]); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][1]); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][2]); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get())); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get())); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mKvSeqlen); ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, softmaxShape); MNN_CHECK_CL_SUCCESS(ret, "setArg Attention softmax"); mLwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), 1, 1}; mOpenCLBackend->recordKernel3d(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx]); } { // Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] // Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] int loop = batch * numHead; int transDimW = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum; int transDimH = ROUND_UP(mKvSeqlen, mAlignKV); std::set<std::string> buildOptions; mKernel_trans_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "trans_3d_buf", buildOptions, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernel_trans_vec[seq_idx])); mGwsTransVec[seq_idx] = {(uint32_t)transDimW/8, (uint32_t)transDimH/8, (uint32_t)(loop)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][0]); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][1]); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][2]); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get())); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get())); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, loop); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimW); ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimH); MNN_CHECK_CL_SUCCESS(ret, "setArg Attention transpose"); mLwsTransVec[seq_idx] = localWS3DDefault(mGwsTransVec[seq_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "trans_3d_buf", mKernel_trans_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first; mGwsTransVec[seq_idx][0] = ROUND_UP(mGwsTransVec[seq_idx][0], std::max((uint32_t)1, mLwsTransVec[seq_idx][0])); mGwsTransVec[seq_idx][1] = ROUND_UP(mGwsTransVec[seq_idx][1], std::max((uint32_t)1, mLwsTransVec[seq_idx][1])); mGwsTransVec[seq_idx][2] = ROUND_UP(mGwsTransVec[seq_idx][2], std::max((uint32_t)1, mLwsTransVec[seq_idx][2])); mOpenCLBackend->recordKernel3d(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx]); } // qk * value { // Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M] // V : [Batch * numHead / group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDN)] -> [B, K, N] // QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, N, M] int loop = batch * numHead; int e_pack = ROUND_UP(seqlen, mAlignQ); int e_pack_piece = e_pack / mQseqSplitNum; int l_pack = ROUND_UP(mKvSeqlen, mAlignKV); int h_pack = ROUND_UP(headDim, mAlignHDN); std::set<std::string> buildOptions; uint32_t layout = 0; auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)0}, {openCLBuffer(mTempQK.get()), openCLBuffer(mTempV.get()), openCLBuffer(mTempQKV.get())}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel()); int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13]; buildOptions.emplace("-DKWG=" + std::to_string(KWG)); buildOptions.emplace("-DKWI=" + std::to_string(KWI)); buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA)); buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC)); buildOptions.emplace("-DMWG=" + std::to_string(MWG)); buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB)); buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC)); buildOptions.emplace("-DNWG=" + std::to_string(NWG)); buildOptions.emplace("-DSA=" + std::to_string(SA)); buildOptions.emplace("-DSB=" + std::to_string(SB)); buildOptions.emplace("-DSTRM=" + std::to_string(STRM)); buildOptions.emplace("-DSTRN=" + std::to_string(STRN)); buildOptions.emplace("-DVWM=" + std::to_string(VWM)); buildOptions.emplace("-DVWN=" + std::to_string(VWN)); if(layout >= 4) { buildOptions.emplace("-DOUTPUTMN"); } int tileM = MWG; int tileN = NWG; int localM = MDIMC; int localN = NDIMC; if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) { buildOptions.emplace("-DUSE_CL_MAD=1"); buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1"); } mKernel_qkv_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision()); int out_per_thread_m = tileM / localM; int out_per_thread_n = tileN / localN; mGwsQkvVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)}; mLwsQkvVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1}; float alpha = 1.0f; float beta = 0.0f; int batch_offset_a = e_pack_piece * l_pack; int batch_offset_b = h_pack * l_pack; int batch_offset_c = e_pack * h_pack; int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0}; int base_ptr_offset[4] = {0, 0, e_pack_piece * seq_idx, 0}; int stride[4] = {e_pack_piece, h_pack, e_pack, h_pack}; int group[4] = {1, group_size, 1, loop}; int idx = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece)); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack)); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack)); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, alpha); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, beta); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get())); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempV.get())); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQKV.get())); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, batch_offset); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, base_ptr_offset); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, stride); ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, group); MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qkv Kernel"); mOpenCLBackend->recordKernel3d(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx]); } } seq_idx = 0; // transpose to output { // QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ)] -> [B, N, M] // output: [batch, seqLenQ/4, headNum, headDim, seqLenQ_4] std::set<std::string> buildOption; mKernel_clip_vec[seq_idx] = runtime->buildKernel("attention_buf", "qkv_transpose_output", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_clip_vec[seq_idx])); mGwsClipVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(headDim, 4)), static_cast<uint32_t>(batch*numHead)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][0]); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][1]); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][2]); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQKV.get())); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(outputs[0])); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignQ); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignHDN); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, seqlen); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, numHead); ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, headDim); mLwsClipVec[seq_idx] = localWS3DDefault(mGwsClipVec[seq_idx], maxWorkGroupSize, runtime, "qkv_transpose_output", mKernel_clip_vec[seq_idx], mOpenCLBackend->getCLTuneLevel()).first; mGwsClipVec[seq_idx][0] = ROUND_UP(mGwsClipVec[seq_idx][0], std::max((uint32_t)1, mLwsClipVec[seq_idx][0])); mGwsClipVec[seq_idx][1] = ROUND_UP(mGwsClipVec[seq_idx][1], std::max((uint32_t)1, mLwsClipVec[seq_idx][1])); mGwsClipVec[seq_idx][2] = ROUND_UP(mGwsClipVec[seq_idx][2], std::max((uint32_t)1, mLwsClipVec[seq_idx][2])); MNN_CHECK_CL_SUCCESS(ret, "setArg qkv_transpose_output"); mOpenCLBackend->recordKernel3d(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx]); } mOpenCLBackend->endRecord(mRecording); return NO_ERROR; } ErrorCode AttentionBufExecution::prefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){ auto runtime = mOpenCLBackend->getOpenCLRuntime(); auto query = inputs[0]; auto key = inputs[1]; auto value = inputs[2]; auto shape = query->shape(); int batch = shape[0]; int seqlen = shape[1]; int numHead = shape[2]; int kvNumHead = key->shape()[2]; int headDim = shape[3]; int groupSize = numHead / kvNumHead; float scale = 1.0 / sqrt(headDim); int maskKvlen = mKvSeqlen; if(mHasMask) { auto mask = inputs[3]; auto mask_shape = mask->shape(); maskKvlen = mask_shape[3]; } mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch})); mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch})); mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch})); mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC); cl::Buffer keyBuffer, valueBuffer; if(mNeedKvCache) { keyBuffer = *mKVCacheCLManager->key(); valueBuffer = *mKVCacheCLManager->value(); } else { mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch})); mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch})); mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC); keyBuffer = openCLBuffer(mTempK.get()); valueBuffer = openCLBuffer(mTempV.get()); } mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC); { // rearrange query std::set<std::string> buildOption; mKernel_rearrangeQ = runtime->buildKernel("attention_buf", "rearrange_q", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeQ)); mGlobalWorkSizeRearrgQ = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \ static_cast<uint32_t>(UP_DIV(headDim, 4)), \ static_cast<uint32_t>(numHead*batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[0]); ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[1]); ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[2]); ret |= mKernel_rearrangeQ->get().setArg(index++, openCLBuffer(query)); ret |= mKernel_rearrangeQ->get().setArg(index++, openCLBuffer(mTempQ.get())); ret |= mKernel_rearrangeQ->get().setArg(index++, seqlen); ret |= mKernel_rearrangeQ->get().setArg(index++, headDim); ret |= mKernel_rearrangeQ->get().setArg(index++, numHead); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_q"); mLocalWorkSizeRearrgQ = localWS3DDefault(mGlobalWorkSizeRearrgQ, maxWorkGroupSize, runtime, "rearrange_q", mKernel_rearrangeQ, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeRearrgQ[0] = ROUND_UP(mGlobalWorkSizeRearrgQ[0], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[0])); mGlobalWorkSizeRearrgQ[1] = ROUND_UP(mGlobalWorkSizeRearrgQ[1], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[1])); mGlobalWorkSizeRearrgQ[2] = ROUND_UP(mGlobalWorkSizeRearrgQ[2], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[2])); mOpRecordUpdateInfo.emplace_back(&mRgQUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ); } { // rearrange key std::set<std::string> buildOption; buildOption.emplace("-DOPENCL_PREFILL_ATTENTION"); mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange)); mGlobalWorkSizeRearrg = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \ static_cast<uint32_t>(UP_DIV(headDim, 4)), \ static_cast<uint32_t>(kvNumHead * batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]); ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]); ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]); ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key)); ret |= mKernel_rearrange->get().setArg(index++, keyBuffer); ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_rearrange->get().setArg(index++, seqlen); ret |= mKernel_rearrange->get().setArg(index++, kvNumHead); ret |= mKernel_rearrange->get().setArg(index++, numHead); ret |= mKernel_rearrange->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k"); mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0])); mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1])); mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2])); if(mNeedKvCache) { mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()}); } mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen}); mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo); } { // matmul qk std::set<std::string> buildOption; if(mIsAddMask){ buildOption.emplace("-DADD_MASK"); } else if(mHasMask) { buildOption.emplace("-DSET_MASK"); } buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize)); mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_div_mask_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead*batch)}; auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk)); uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]); ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]); ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[2]); ret |= mKernel_qk->get().setArg(index++, openCLBuffer(mTempQ.get())); ret |= mKernel_qk->get().setArg(index++, keyBuffer); if(mHasMask) { ret |= mKernel_qk->get().setArg(index++, openCLBuffer(inputs[3])); } ret |= mKernel_qk->get().setArg(index++, openCLBuffer(mTempQK.get())); ret |= mKernel_qk->get().setArg(index++, scale); ret |= mKernel_qk->get().setArg(index++, seqlen); ret |= mKernel_qk->get().setArg(index++, maskKvlen); ret |= mKernel_qk->get().setArg(index++, mKvSeqlen); ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_qk->get().setArg(index++, numHead); ret |= mKernel_qk->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_div_mask_prefill"); mLocalWorkSizeQk = localWS3DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_div_mask_prefill", mKernel_qk, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0])); mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1])); mGlobalWorkSizeQk[2] = ROUND_UP(mGlobalWorkSizeQk[2], std::max((uint32_t)1, mLocalWorkSizeQk[2])); if(mNeedKvCache) { mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()}); } if(mHasMask){ mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKvSeqlen), &mKvSeqlen}); mQkUpdateInfo.update_kernel_args.push_back({0, 11, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); }else{ mQkUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(mKvSeqlen), &mKvSeqlen}); mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); } mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo); } { // softmax int inside = ROUND_UP(seqlen, 4); int outside = numHead * batch; int localSize = 64; std::set<std::string> buildOption; buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize)); mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_v4_buf", buildOption, mOpenCLBackend->getPrecision()); mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(UP_DIV(inside, 4)), static_cast<uint32_t>(outside)}; auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax)); uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]); ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]); ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]); ret |= mKernel_softmax->get().setArg(index++, openCLBuffer(mTempQK.get())); ret |= mKernel_softmax->get().setArg(index++, openCLBuffer(mTempSoftMax.get())); ret |= mKernel_softmax->get().setArg(index++, inside); ret |= mKernel_softmax->get().setArg(index++, outside); ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen); MNN_CHECK_CL_SUCCESS(ret, "setArg softmax"); mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1}; if(localSize == 1){ mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel()).first; } mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0])); mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1])); mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2])); mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen}); mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax); } { // rearrange value std::set<std::string> buildOption; buildOption.emplace("-DOPENCL_PREFILL_ATTENTION"); mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV)); mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \ static_cast<uint32_t>(UP_DIV(seqlen, 4)), \ static_cast<uint32_t>(kvNumHead * batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]); ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]); ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]); ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value)); ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer); ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_rearrangeV->get().setArg(index++, seqlen); ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead); ret |= mKernel_rearrangeV->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v"); mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0])); mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1])); mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2])); if(mNeedKvCache) { mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()}); } mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen}); mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo); } // qk * value { std::set<std::string> buildOption; buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize)); mKernel_qkv = runtime->buildKernel("attention_buf", "matmul_qkv_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qkv)); mGlobalWorkSizeQkv = {static_cast<uint32_t>(UP_DIV(headDim, 8)), static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(numHead*batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]); ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]); ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[2]); ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(mTempSoftMax.get())); ret |= mKernel_qkv->get().setArg(index++, valueBuffer); ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0])); ret |= mKernel_qkv->get().setArg(index++, seqlen); ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen); ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_qkv->get().setArg(index++, numHead); ret |= mKernel_qkv->get().setArg(index++, kvNumHead); ret |= mKernel_qkv->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_prefill"); mLocalWorkSizeQkv = localWS3DDefault(mGlobalWorkSizeQkv, maxWorkGroupSize, runtime, "matmul_qkv_prefill", mKernel_qkv, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0])); mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1])); mGlobalWorkSizeQkv[2] = ROUND_UP(mGlobalWorkSizeQkv[2], std::max((uint32_t)1, mLocalWorkSizeQkv[2])); if(mNeedKvCache) { mQkvUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()}); } mQkvUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen}); mQkvUpdateInfo.update_kernel_args.push_back({0, 8, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo); } mOpenCLBackend->endRecord(mRecording); return NO_ERROR; } ErrorCode AttentionBufExecution::decodeResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){ auto runtime = mOpenCLBackend->getOpenCLRuntime(); auto query = inputs[0]; auto key = inputs[1]; auto value = inputs[2]; auto shape = query->shape(); int batch = shape[0]; int seqlen = shape[1]; int numHead = shape[2]; int kvNumHead = key->shape()[2]; int headDim = shape[3]; int group_size = numHead / kvNumHead; float scale = 1.0 / sqrt(headDim); int mask_seqlen = seqlen; int mask_kvlen = seqlen; if(mHasMask) { auto mask = inputs[3]; auto mask_shape = mask->shape(); mask_seqlen = mask_shape[2]; mask_kvlen = mask_shape[3]; } cl::Buffer keyBuffer, valueBuffer; if(mNeedKvCache) { keyBuffer = *mKVCacheCLManager->key(); valueBuffer = *mKVCacheCLManager->value(); } else { mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch})); mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch})); mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC); mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC); mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC); keyBuffer = openCLBuffer(mTempK.get()); valueBuffer = openCLBuffer(mTempV.get()); } mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead})); mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead})); mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION); mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION); { // rearrange key std::set<std::string> buildOption; mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange)); mGlobalWorkSizeRearrg = {static_cast<uint32_t>(1), \ static_cast<uint32_t>(UP_DIV(headDim, 4)), \ static_cast<uint32_t>(kvNumHead * batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]); ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]); ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]); ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key)); ret |= mKernel_rearrange->get().setArg(index++, keyBuffer); ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_rearrange->get().setArg(index++, seqlen); ret |= mKernel_rearrange->get().setArg(index++, kvNumHead); ret |= mKernel_rearrange->get().setArg(index++, numHead); ret |= mKernel_rearrange->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k"); mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0])); mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1])); mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2])); if(mNeedKvCache) { mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()}); mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen}); mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo); } else { mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg); } } { // matmul qk std::set<std::string> buildOption; buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size)); mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_decode", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead)}; auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk)); uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]); ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]); ret |= mKernel_qk->get().setArg(index++, openCLBuffer(query)); ret |= mKernel_qk->get().setArg(index++, keyBuffer); ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get())); ret |= mKernel_qk->get().setArg(index++, scale); ret |= mKernel_qk->get().setArg(index++, mKvSeqlen); ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_qk->get().setArg(index++, numHead); ret |= mKernel_qk->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_decode"); mLocalWorkSizeQk = localWS2DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_decode", mKernel_qk, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0])); mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1])); if(mNeedKvCache) { mQkUpdateInfo.update_kernel_args.push_back({0, 0, sizeof(mGlobalWorkSizeQk0), &mGlobalWorkSizeQk0}); mQkUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()}); mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()}); mQkUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKvSeqlen), &mKvSeqlen}); mQkUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mQkGlobal_size[0] = mGlobalWorkSizeQk[0]; mQkGlobal_size[1] = mGlobalWorkSizeQk[1]; mQkUpdateInfo.update_global_size.push_back({0, mQkGlobal_size}); mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo); mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo); } else { mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk); } } { // softmax int inside = 1; int outside = numHead; int localSize = 64; std::set<std::string> buildOption; buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize)); mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_in1_buf", buildOption, mOpenCLBackend->getPrecision()); mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(inside), static_cast<uint32_t>(outside)}; auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax)); uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]); ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]); ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]); ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get())); ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get())); ret |= mKernel_softmax->get().setArg(index++, inside); ret |= mKernel_softmax->get().setArg(index++, outside); ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen); MNN_CHECK_CL_SUCCESS(ret, "setArg softmax"); mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1}; if(localSize == 1){ mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel()).first; } mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0])); mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1])); mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2])); if(mNeedKvCache) { mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()}); mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()}); mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen}); mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, &mSoftMaxUpdateInfo); } else { mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax); } } { // rearrange value std::set<std::string> buildOption; mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV)); mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \ static_cast<uint32_t>(1), \ static_cast<uint32_t>(kvNumHead * batch)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]); ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]); ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]); ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value)); ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer); ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen); ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_rearrangeV->get().setArg(index++, seqlen); ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead); ret |= mKernel_rearrangeV->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v"); mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel()).first; mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0])); mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1])); mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2])); if(mNeedKvCache) { mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()}); mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen}); mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo); mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo); } else { mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV); } } // qk * value { std::set<std::string> buildOption; buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size)); const int total_kernel = 2; std::string kernelName[total_kernel] = {"matmul_qkv_decode_b4", "matmul_qkv_decode_b8"}; std::string unroll[total_kernel] = {"-DLOOP_UNROLL_4", "-DLOOP_UNROLL_8"}; int itemC[total_kernel] = {4, 8}; int actual_kernel = 2; std::shared_ptr<KernelWrap> kernel[total_kernel * total_kernel]; std::vector<uint32_t> globalWorkSize[total_kernel * total_kernel]; std::vector<uint32_t> localWorkSize[total_kernel * total_kernel]; std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index) for (int i = 0; i < actual_kernel; i++) { for(int j = 0; j < actual_kernel; j++){ int knl_idx = i * total_kernel + j; auto option = buildOption; option.emplace(unroll[j]); kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("attention_buf", kernelName[i], option, mOpenCLBackend->getPrecision()); uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx])); globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(headDim, itemC[i])), static_cast<uint32_t>(numHead)}; uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][0]); ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][1]); ret |= kernel[knl_idx]->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get())); ret |= kernel[knl_idx]->get().setArg(index++, valueBuffer); ret |= kernel[knl_idx]->get().setArg(index++, openCLBuffer(outputs[0])); ret |= kernel[knl_idx]->get().setArg(index++, mKvSeqlen); ret |= kernel[knl_idx]->get().setArg(index++, mKeyValueMaxlen); ret |= kernel[knl_idx]->get().setArg(index++, numHead); ret |= kernel[knl_idx]->get().setArg(index++, kvNumHead); ret |= kernel[knl_idx]->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode"); std::pair<std::vector<uint32_t>, int> retTune; retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[i] + unroll[j], kernel[knl_idx], mOpenCLBackend->getCLTuneLevel()); if(min_cost.first > retTune.second) { min_cost.first = retTune.second; min_cost.second = knl_idx; mLocalWorkSizeQkv = {retTune.first[0], retTune.first[1]}; } } } int min_index = min_cost.second / 2; int min_index_unroll = min_cost.second % 2; mGlobalWorkSizeQkv = {globalWorkSize[min_cost.second][0], globalWorkSize[min_cost.second][1]}; buildOption.emplace(unroll[min_index_unroll]); mKernel_qkv = runtime->buildKernel("attention_buf", kernelName[min_index], buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]); uint32_t index = 0; cl_int ret = CL_SUCCESS; ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]); ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]); ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get())); ret |= mKernel_qkv->get().setArg(index++, valueBuffer); ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0])); ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen); ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen); ret |= mKernel_qkv->get().setArg(index++, numHead); ret |= mKernel_qkv->get().setArg(index++, kvNumHead); ret |= mKernel_qkv->get().setArg(index++, headDim); MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode"); mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0])); mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1])); if(mNeedKvCache) { mQkvUpdateInfo.update_kernel_args.push_back({0, 2, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()}); mQkvUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()}); mQkvUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mKvSeqlen), &mKvSeqlen}); mQkvUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen}); mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo); mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo); } else { mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv); } } mOpenCLBackend->endRecord(mRecording); return NO_ERROR; } // [Batch, q_seqlen, HeadNum, HeadDim] -> [Batch, kv_seqlen, HeadNum, HeadDim] ErrorCode AttentionBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { mOpenCLBackend->startRecord(mRecording); auto shape = inputs[0]->shape(); int seqlen = shape[1]; if(mNeedKvCache) { // if has kv_cache, default has mask MNN_ASSERT(inputs.size() > 3); } mHasMask = inputs.size() > 3; mIsDecode = seqlen == 1; // reset updateArgs variable and kernel vector init(); // handle kv_cache, like copy kv handleKVCache(inputs, outputs); mLongPrefill = false; if(mIsDecode) { return decodeResize(inputs, outputs); } else { if(seqlen > 512 && mPastKvSeqlen == 0){ mLongPrefill = true; return longPrefillResize(inputs, outputs); }else{ return prefillResize(inputs, outputs); } } return NO_ERROR; } ErrorCode AttentionBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { #ifdef LOG_VERBOSE MNN_PRINT("start AttentionBufExecution onExecute !\n"); #endif if(mNeedKvCache && mIsDecode){ mKVCacheCLManager->reallocKVCache(mMeta); } UpdateArgs(inputs, outputs); #ifdef ENABLE_OPENCL_TIME_PROFILER if(mLongPrefill) { int seq_idx = 0; cl::Event event0, event1, event2, event3, event4, event5, event6; run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event0); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_qkv", event0}); if(mHasMask) { run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event1); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_mask", event1}); } for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) { run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event2); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event2}); run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event3); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event3}); run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event4); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"transpose_softmax", event4}); run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event5); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event5}); } seq_idx = 0; run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event6); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_output", event6}); } else{ if(mIsDecode){ cl::Event event0, event1, event2, event3, event4; run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event0); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event0}); runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event1); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event1}); run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event2); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event2}); run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event3); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event3}); runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event4); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event4}); }else{ cl::Event event0, event1, event2, event3, event4, event5; run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime(), &event0); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_q", event0}); run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event1); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event1}); run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event2); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event2}); run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event3); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event3}); run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event4); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event4}); run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event5); mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event5}); } } #else if(mOpenCLBackend->isUseRecordQueue()){ mOpenCLBackend->addRecord(mRecording, mOpRecordUpdateInfo); #ifdef LOG_VERBOSE MNN_PRINT("End AttentionBufExecution onExecute... \n"); #endif return NO_ERROR; } if(mLongPrefill) { int seq_idx = 0; run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); if(mHasMask) { run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); } for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) { run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); } seq_idx = 0; run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime()); } else{ if(mIsDecode){ run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime()); runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime()); runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime()); }else{ run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime()); run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime()); } } #endif #ifdef LOG_VERBOSE MNN_PRINT("end AttentionBufExecution onExecute !\n"); #endif return NO_ERROR; } AttentionBufExecution::AttentionBufExecution(const MNN::Op *op, Backend* backend, bool kv_cahce) : CommonExecution(backend, op) { mNeedKvCache = kv_cahce; mKVCacheCLManager.reset(new KVCacheCLManager(backend, kv_cahce)); mOpenCLBackend = static_cast<OpenCLBackend *>(backend); auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision()); mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta); mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel)); } AttentionBufExecution::AttentionBufExecution(std::shared_ptr<KVCacheCLManager> manager, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op), mKVCacheCLManager(manager) { mOpenCLBackend = static_cast<OpenCLBackend *>(backend); auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision()); mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta); mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel)); } bool AttentionBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) { if (nullptr == dst) { return true; } *dst = new AttentionBufExecution(mKVCacheCLManager, op, bn); return true; } class AttentionBufCreator : public OpenCLBackend::Creator { public: virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op, Backend *backend) const override { for (int i = 0; i < inputs.size(); ++i) { TensorUtils::setTensorSupportPack(inputs[i], false); } for (int i = 0; i < outputs.size(); ++i) { TensorUtils::setTensorSupportPack(outputs[i], false); } auto param = op->main_as_AttentionParam(); return new AttentionBufExecution(op, backend, param->kv_cache()); } }; REGISTER_OPENCL_OP_CREATOR_TRANSFORMER(AttentionBufCreator, OpType_Attention, BUFFER); } // namespace OpenCL } // namespace MNN #endif/* MNN_SUPPORT_TRANSFORMER_FUSE */