source/core/TensorUtils.cpp (899 lines of code) (raw):
//
// TensorUtils.cpp
// MNN
//
// Created by MNN on 2018/08/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "core/TensorUtils.hpp"
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <cmath>
#include <cstring>
#include <algorithm>
#include "core/Backend.hpp"
#include "core/Macro.h"
namespace MNN {
Tensor::InsideDescribe::NativeInsideDescribe* TensorUtils::getDescribe(const Tensor* tensor) {
return tensor->mDescribe->mContent.get();
}
bool TensorUtils::regionIsFull(Tensor* input) {
auto des = TensorUtils::getDescribe(input);
int size = 1;
for (int i = 0; i < input->dimensions(); ++i) {
size *= input->length(i);
}
int regionSize = 0;
for (auto& region : des->regions) {
regionSize += region.size[1] * region.size[0] * region.size[2];
}
return regionSize == size;
}
Tensor::InsideDescribe::Region TensorUtils::makeFullSlice(Tensor* input) {
Tensor::InsideDescribe::Region totalSlice;
totalSlice.src.offset = 0;
totalSlice.dst.offset = 0;
totalSlice.origin = input;
for (int i = 0; i < input->dimensions(); ++i) {
totalSlice.size[2] *= input->length(i);
}
totalSlice.dst.stride[1] = totalSlice.size[2];
totalSlice.dst.stride[0] = totalSlice.size[2];
totalSlice.src.stride[1] = totalSlice.size[2];
totalSlice.src.stride[0] = totalSlice.size[2];
return totalSlice;
}
bool TensorUtils::reshapeSlice(Tensor::InsideDescribe::Region& slice, int outside, int inside, int axis) {
if (slice.size[1] == 1 && slice.size[0] == 1 && slice.size[2] == outside * inside * axis) {
slice.size[0] = outside;
slice.size[2] = inside;
slice.size[1] = axis;
slice.dst.stride[0] = inside * axis;
slice.dst.stride[1] = inside;
auto originStride = slice.src.stride[2];
slice.src.stride[0] = originStride * inside * axis;
slice.src.stride[1] = originStride * inside;
return true;
}
if (slice.size[0] == outside && slice.size[1] == axis && slice.size[2] == inside) {
return true;
}
return false;
}
void TensorUtils::setupTensorInfo(const Tensor* tensor, Tensor* wrapTensor, MNN_DATA_FORMAT mMidFormat) {
TensorUtils::getDescribe(wrapTensor)->dimensionFormat = mMidFormat;
auto tensorFormat = TensorUtils::getDescribe(tensor)->dimensionFormat;
bool originCaffeFormat = (tensorFormat == MNN_DATA_FORMAT_NCHW || tensorFormat == MNN_DATA_FORMAT_NC4HW4);
bool wrapCaffeFormat = (mMidFormat == MNN_DATA_FORMAT_NCHW || mMidFormat == MNN_DATA_FORMAT_NC4HW4);
bool originTfFormat = (tensorFormat == MNN_DATA_FORMAT_NHWC || tensorFormat == MNN_DATA_FORMAT_NHWC4);
bool wrapTfFormat = (mMidFormat == MNN_DATA_FORMAT_NHWC || mMidFormat == MNN_DATA_FORMAT_NHWC4);
if ((originCaffeFormat && wrapCaffeFormat) || (originTfFormat && wrapTfFormat)) {
TensorUtils::copyShape(tensor, wrapTensor);
} else if (originCaffeFormat && wrapTfFormat) {
for (int i = 1; i < wrapTensor->dimensions() - 1; ++i) {
wrapTensor->setLength(i, tensor->length(i + 1));
}
wrapTensor->setLength(0, tensor->length(0));
wrapTensor->setLength(wrapTensor->dimensions() - 1, tensor->length(1));
} else if (originTfFormat && wrapCaffeFormat) {
for (int i = 2; i < wrapTensor->dimensions(); ++i) {
wrapTensor->setLength(i, tensor->length(i - 1));
}
wrapTensor->setLength(0, tensor->length(0));
wrapTensor->setLength(1, tensor->length(tensor->dimensions() - 1));
} else {
// will not reach here
MNN_ASSERT(false);
}
TensorUtils::setLinearLayout(wrapTensor);
wrapTensor->buffer().type = tensor->getType();
}
void TensorUtils::copyShape(const Tensor* source, Tensor* dest, bool copyFormat, bool copyRef) {
auto& ob = dest->buffer();
auto& ib = source->buffer();
ob.dimensions = ib.dimensions;
::memcpy(ob.dim, ib.dim, ib.dimensions * sizeof(halide_dimension_t));
if (copyFormat) {
getDescribe(dest)->dimensionFormat = getDescribe(source)->dimensionFormat;
}
if (copyRef) {
auto dstDes = getDescribe(dest);
auto srcDes = getDescribe(source);
dstDes->regions = srcDes->regions;
dstDes->quantAttr = srcDes->quantAttr;
dstDes->type = srcDes->type;
dest->buffer().type = source->getType();
}
adjustTensorForCompability(dest);
}
void TensorUtils::setShape(Tensor* dest, const std::vector<int>& alldims) {
auto& ob = dest->buffer();
ob.dimensions = alldims.size();
int stride = 1;
for (int i = alldims.size() - 1; i >= 0; --i) {
ob.dim[i].stride = stride;
ob.dim[i].extent = alldims[i];
stride *= alldims[i];
}
return;
}
void TensorUtils::setLinearLayout(Tensor* tensor) {
auto& buffer = tensor->buffer();
int size = 1;
for (int i = 0; i < buffer.dimensions; ++i) {
auto index = buffer.dimensions - i - 1;
auto extent = buffer.dim[index].extent;
if (1 == index && tensor->mDescribe->mContent->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
extent = ROUND_UP(extent, 4);
}
buffer.dim[index].stride = size;
size *= extent;
}
}
static const Tensor* createHostPlanar(const Tensor* source) {
// check
auto bnType = MNN_FORWARD_CPU;
auto tensorBackend = TensorUtils::getDescribeOrigin(source)->getBackend();
if (tensorBackend) {
bnType = tensorBackend->type();
}
bool device = bnType != MNN_FORWARD_CPU;
bool chunky = TensorUtils::getDescribe(source)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4;
// no convert needed
if (!device && !chunky) {
return source;
}
// convert
if (chunky) {
Tensor* result = source->createHostTensorFromDevice(source, false);
if (result->getDimensionType() == MNN::Tensor::TENSORFLOW) {
TensorUtils::getDescribe(result)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
} else {
TensorUtils::getDescribe(result)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
}
TensorUtils::setLinearLayout(result);
if (device) {
void *host = ((Tensor *)source)->map(MNN::Tensor::MAP_TENSOR_READ, result->getDimensionType());
if(host != nullptr) {
::memcpy(result->buffer().host, host, result->size());
}
((Tensor *)source)->unmap(MNN::Tensor::MAP_TENSOR_READ, result->getDimensionType(), host);
} else {
Backend::Info info;
info.type = MNN_FORWARD_CPU;
std::shared_ptr<Runtime> runtime(MNNGetExtraRuntimeCreator(MNN_FORWARD_CPU)->onCreate(info));
auto backend = runtime->onCreate();
backend->onCopyBuffer(source, result);
delete backend;
}
return result;
} else {
return source->createHostTensorFromDevice(source, true);
}
}
template <typename T>
static void copyTensorToFloat(const Tensor* source, double* dest) {
auto srcData = source->host<T>();
auto size = source->elementSize();
for (int i = 0; i < size; ++i) {
dest[i] = srcData[i];
}
}
static bool equals(const double* pa, const double* pb, size_t size, double tolerance, double epsilon, bool overall,
bool prints) {
// get max if using overall torelance
double max = fabs(pb[0]);
if (overall) {
for (int i = 1; i < size; i++) {
max = std::max(max, fabs(pb[i]));
}
}
// compare
for (int i = 0; i < size; i++) {
float va = pa[i], vb = pb[i];
if (std::isinf(va) && std::isinf(vb)) {
continue;
}
if (fabs(va) < epsilon && fabs(vb) < epsilon) {
continue;
}
float div = overall ? max : fabsf(vb);
if (fabsf(va - vb) / div > tolerance) {
if (prints) {
MNN_PRINT("%d: %f != %f\n", i, va, vb);
}
return false;
}
}
return true;
}
bool TensorUtils::compareTensors(const Tensor* compare, const Tensor* expect, float tolerance, bool overall,
bool printsErrors, bool printsTensors) {
// type
if (compare->getType().code != expect->getType().code || compare->getType().bits != expect->getType().bits) {
if (printsErrors) {
MNN_PRINT("NOT equal in type: %d/%d - %d/%d.\n", compare->getType().code, compare->getType().bits,
expect->getType().code, expect->getType().bits);
}
return false;
}
// dimensions
if (compare->dimensions() != expect->dimensions()) {
if (printsErrors) {
MNN_PRINT("NOT equal in dimensions: %d - %d.\n", compare->dimensions(), expect->dimensions());
}
return false;
}
for (int i = 0; i < compare->dimensions(); i++) {
if (compare->length(i) == expect->length(i)) {
continue;
}
if (printsErrors) {
MNN_PRINT("NOT equal in dimensions[%d]: %d - %d.\n", i, compare->length(i), expect->length(i));
}
return false;
}
// convert to host if needed
auto a = createHostPlanar(compare), b = createHostPlanar(expect);
// get value as double
auto size = expect->elementSize();
std::vector<double> expectValue(expect->elementSize(), 0.0f);
std::vector<double> compareValue(compare->elementSize(), 0.0f);
auto result = false;
if (b->buffer().type.code == halide_type_uint) {
switch (b->buffer().type.bits) {
case 8:
copyTensorToFloat<uint8_t>(a, compareValue.data());
copyTensorToFloat<uint8_t>(b, expectValue.data());
break;
case 16:
copyTensorToFloat<uint16_t>(a, compareValue.data());
copyTensorToFloat<uint16_t>(b, expectValue.data());
break;
case 32:
copyTensorToFloat<uint32_t>(a, compareValue.data());
copyTensorToFloat<uint32_t>(b, expectValue.data());
break;
case 64:
copyTensorToFloat<uint64_t>(a, compareValue.data());
copyTensorToFloat<uint64_t>(b, expectValue.data());
break;
default:
break;
}
} else if (b->buffer().type.code == halide_type_int) {
switch (b->buffer().type.bits) {
case 8:
copyTensorToFloat<int8_t>(a, compareValue.data());
copyTensorToFloat<int8_t>(b, expectValue.data());
break;
case 16:
copyTensorToFloat<int16_t>(a, compareValue.data());
copyTensorToFloat<int16_t>(b, expectValue.data());
break;
case 32:
copyTensorToFloat<int32_t>(a, compareValue.data());
copyTensorToFloat<int32_t>(b, expectValue.data());
break;
case 64:
copyTensorToFloat<int64_t>(a, compareValue.data());
copyTensorToFloat<int64_t>(b, expectValue.data());
break;
default:
break;
}
} else if (b->buffer().type.code == halide_type_float) {
switch (b->buffer().type.bits) {
case 32:
copyTensorToFloat<float>(a, compareValue.data());
copyTensorToFloat<float>(b, expectValue.data());
break;
default:
break;
}
} else {
if (printsErrors) {
MNN_PRINT("unsupported data type.");
}
}
auto epsilon = FLT_EPSILON;
if ((NULL != compareValue.data()) && (NULL != expectValue.data())) {
result = equals(compareValue.data(), expectValue.data(), size, tolerance, epsilon, overall, printsErrors);
}
// clean up
if (a != compare) {
delete a;
}
if (b != expect) {
delete b;
}
return result;
}
// is copy only region
bool TensorUtils::isCopyRegion(const Tensor::InsideDescribe::Region& region) {
bool eq = true;
for (int i = 0; i < 3; i++) {
eq &= ((region.src.stride[i] == region.dst.stride[i]) || (region.size[i] <= 1));
}
return eq;
}
bool TensorUtils::isTransposeRegion(const Tensor::InsideDescribe::Region& region) {
int srcOne = -1, dstOne = -1;
for (int i = 0; i < 3; i++) {
if (region.src.stride[i] == 1 && region.size[i] != 1) {
if (srcOne >= 0/* || region.size[i] < 4*/) {
return false;
}
srcOne = i;
}
if (region.dst.stride[i] == 1 && region.size[i] != 1) {
if (dstOne >= 0/* || region.size[i] < 4*/) {
return false;
}
dstOne = i;
}
}
return srcOne >= 0 && dstOne >= 0 && srcOne != dstOne;
}
bool TensorUtils::isTileRegion(const Tensor::InsideDescribe::Region& region) {
bool res = true;
for (int i = 0; i < 3; i++) {
if (region.src.stride[i] != 0 && region.size[i] > 1) {
res &= (region.src.stride[i] == region.dst.stride[i]);
}
}
return res;
}
bool TensorUtils::isDepthToSpaceRegions(const Tensor* output) {
const auto& regions = TensorUtils::getDescribe(output)->regions;
if (regions.empty()) {
return false;
}
auto input = regions[0].origin;
for (const auto region : regions) {
if (region.origin != input) {
return false;
}
}
auto ic = input->channel();
auto ih = input->height();
auto iw = input->width();
auto oc = output->channel();
auto oh = output->height();
auto ow = output->width();
if (ic * ih * iw != oc * oh * ow) {
return false;
}
int hblock = oh / ih;
int wblock = ow / iw;
if (hblock != wblock) {
return false;
}
if (hblock * wblock * oc != ic) {
return false;
}
if (regions.size() != hblock * wblock) {
return false;
}
return true;
}
// compute offset through region
static inline int offsetCompute(const Tensor::InsideDescribe::Region& reg, int srcOffset, int dstOffset, bool backward) {
const Tensor::InsideDescribe::View* src;
const Tensor::InsideDescribe::View* dst;
if (backward) {
src = ®.dst;
dst = ®.src;
} else {
src = ®.src;
dst = ®.dst;
}
int res = 0;
for (int i = 0; i < 3; i++) {
if (reg.size[i] > 1) {
res += (srcOffset / src->stride[i] - dstOffset / src->stride[i]) * dst->stride[i];
srcOffset %= src->stride[i];
dstOffset %= src->stride[i];
}
}
return res;
}
// expand src stride with expand value
static inline bool expandSrc(std::vector<int>& src, std::vector<int>& dst, std::vector<int>& size, int expandValue) {
if (expandValue <= 0) {
return false;
}
for (int i = size.size()-1; i >= 0; i--) {
int splitSize = expandValue / src[i];
if (!(expandValue % src[i] || size[i] % splitSize)) {
src.insert(src.begin()+i, expandValue);
dst.insert(dst.begin()+i, splitSize * dst[i]);
size[i] /= splitSize;
size.insert(size.begin()+i+1, splitSize);
return true;
}
}
return false;
}
// expand stride and size with expand value
static inline bool expandStrideSize(int* src, int* dst, int* size, int& num, int expandValue) {
#define MNN_3_INT_INSERT(x, i, y) if (i == 2) { x[2] = y; } else if (i == 1) { x[2] = x[1]; x[1] = y; } else if (i == 0) { x[2] = x[1]; x[1] = x[0]; x[0] = y; } else { return false; }
for (int i = num-1; i >= 0; i--) {
int splitSize = expandValue / src[i];
if (!(expandValue % src[i] || size[i] % splitSize)) {
MNN_3_INT_INSERT(src, i, expandValue)
MNN_3_INT_INSERT(dst, i, (splitSize * dst[i]))
size[i] /= splitSize;
MNN_3_INT_INSERT(size, (i+1), splitSize)
if (++num > 3) return false;
return true;
}
}
return false;
#undef MNN_3_INT_INSERT
}
bool TensorUtils::refTensorContent(Tensor* dst, const Tensor* src) {
auto des = TensorUtils::getDescribe(dst);
auto srcDes = TensorUtils::getDescribe(src);
auto desO = TensorUtils::getDescribeOrigin(dst);
auto srcDesO = TensorUtils::getDescribeOrigin(src);
bool needMalloc = dst->buffer().host != src->buffer().host || dst->buffer().device != src->buffer().device || des->extra.offset != srcDes->extra.offset;
desO->setBackend(srcDesO->getBackend());
dst->buffer().host = src->buffer().host;
dst->buffer().device = src->buffer().device;
dst->buffer().flags = src->buffer().flags;
des->extra.offset = srcDes->extra.offset;
des->group = -1;
return needMalloc;
}
static bool _ClipDst(int* stride, const int srcOffsetO, const int dstOffsetO, const int* srcSize, const int* dstSize, const int sizeNum, int* dstMax, int* dstMin, bool checkFull = true) {
/* Compute The range of dx, dy, dz:
s0 * (dx-sx) + s1 * (dy-sy) + s2 * (dz-sz) + (doff-soff) = 0
Assume the region won't be overlapped, then extract doff -> s0*xd+ s1*yd+s2*zd, soff -> s0*xs+s1*ys+s2*zs
xd-xs=xo, yd-ys=yo, zd-zs=zo
then:
dx-sx+xo = 0
dy-sy+yo = 0
dz-sz+zo = 0
dx=sx-xo -> [max(0, -xo), max(0, min(sxr-xo, dxr))]
dy,dz compute the same
**/
int srcOffset = srcOffsetO;
int dstOffset = dstOffsetO;
int offsetBias = dstOffset - srcOffset;
if (sizeNum == 0) {
// All stride is zero, then size will be all one
return offsetBias == 0;
}
int o[3] = {0, 0, 0};
int validIndex[3] = {0, 1, 2};
if (sizeNum == 2) {
if (stride[0] < stride[1]) {
validIndex[0] = 1;
validIndex[1] = 0;
}
} else if (sizeNum > 2) {
int maxs = stride[0];
int mins = stride[0];
int maxi = 0;
int mini = 0;
// Sort index by stride
for (int i=1; i<sizeNum; ++i) {
int s = stride[i];
if (s > maxs) {
maxs = s;
maxi = i;
}
if (s < mins) {
mins = s;
mini = i;
}
}
for (int i=0; i<sizeNum; ++i) {
if (i != maxi && i != mini) {
validIndex[1] = i;
break;
}
}
validIndex[0] = maxi;
validIndex[2] = mini;
}
// Compute offset
for (int i=0; i<sizeNum; ++i) {
int s = stride[validIndex[i]];
int xs = srcOffset / s;
int xd = dstOffset / s;
o[validIndex[i]] = xd-xs;
srcOffset = srcOffset % s;
dstOffset = dstOffset % s;
}
if (0 != srcOffset || 0 != dstOffset) {
return false;
}
int srcMax = 0;
for (int i=0; i<sizeNum; ++i) {
srcMax += srcSize[i] * stride[i];
dstMin[i] = ALIMAX(0, -o[i]);
dstMax[i] = ALIMIN(srcSize[i]-o[i], dstSize[i]);
}
int srcMin = -1;
for (int i=0; i<sizeNum; ++i) {
if (dstMax[i] < srcSize[i]) {
if (srcMin == -1) {
srcMin = stride[i];
} else {
srcMin = ALIMIN(stride[i], srcMin);
}
}
}
if (srcMin < 0 || (!checkFull)) {
// Src is fully used
return true;
}
// Check If dstMax is inside src, it means one region can't describe dst - src
// TODO: Support slice region to support fuse
for (int i=0; i<sizeNum; ++i) {
if (dstMax[i] == dstSize[i]) {
continue;
}
int bias = offsetBias + dstMax[i] * stride[i];
if (bias < srcMax && bias >= srcMin) {
// for [dstMax, dstSize], may exist value match formula
// Try Clip a new region
for (int k=0; k<sizeNum; ++k) {
if (dstMax[k] < srcSize[k]) {
int newDstSize[3];
int newSrcSize[3];
for (int j=0; j<sizeNum; ++j) {
newDstSize[j] = dstSize[j];
newSrcSize[j] = srcSize[j];
}
newSrcSize[k] = srcSize[k] - dstMax[k];
newDstSize[i] = dstSize[i] - dstMax[i];
int dstMaxNew[3];
int dstMinNew[3];
auto status = _ClipDst(stride, srcOffsetO + dstMax[k] * stride[k], dstOffsetO + dstMax[i] * stride[i], newSrcSize, newDstSize, sizeNum, dstMaxNew, dstMinNew, false);
if (status) {
bool valid = true;
for (int j=0; j<sizeNum; ++j) {
if (dstMaxNew[j] <= dstMinNew[j]) {
valid = false;
break;
}
}
if (valid) {
// Need new region
return false;
}
}
}
}
}
}
return true;
}
static bool _RegionValid(int* stride, int offset, int* size, int sizeNum, size_t limitSize) {
int maxOffset = offset;
int minOffset = offset;
// Check start and end
for (int i=0; i<sizeNum; ++i) {
if (stride[i] > 0) {
maxOffset += (stride[i] * (size[i] - 1));
} else {
minOffset += (stride[i] * (size[i] - 1));
}
}
if (minOffset < 0 || maxOffset >= limitSize) {
return false;
}
return true;
}
class TensorUtils::FuseRegionStatus {
public:
enum Status {
FUSE_SRC_COPY,
FUSE_REGION_COMPUTE
};
void apply(const Tensor::InsideDescribe::Region& srcReg, Tensor::InsideDescribe::Region& dstReg) {
switch (mStatus) {
case FUSE_SRC_COPY:
dstReg.origin = srcReg.origin;
dstReg.src.offset += srcReg.src.offset - srcReg.dst.offset;
break;
case FUSE_REGION_COMPUTE:
{
if (dstSize[0] == 0) {
dstReg.size[0] = 0;
dstReg.origin = nullptr;
break;
}
for (int i=0; i<3; ++i) {
dstReg.size[i] = 1;
dstReg.src.stride[i] = 0;
dstReg.dst.stride[i] = 0;
}
int valid[3] = {0, 0, 0};
int offset = 3 - dstNum;
if (dstNum > sizeNum) {
for (int i = dstNum - 1; i >= 0; i--) {
if (i < dstNum) {
if (dstSize[i] == 1) {
expandIdx = i;
}
dstReg.size[i+offset] = dstMax[i] - dstMin[i];
valid[i] = dstSize[i] > 1;
} else {
dstReg.size[i+offset] = 1;
valid[i] = 0;
}
}
} else {
for (int i=0; i<dstNum; ++i) {
dstReg.size[i+offset] = dstMax[i] - dstMin[i];
valid[i] = dstSize[i] > 1 ? 1 : 0;
}
}
int idx = 0;
for (int i = 0; i < 3; i++) {
if (valid[i] > 0 || i == expandIdx) {
dstReg.src.stride[i+offset] = newSrc[idx];
dstReg.dst.stride[i+offset] = dstDst[idx++];
}
}
dstReg.origin = srcReg.origin;
dstReg.src.offset = newSrcOffset;
dstReg.dst.offset = newDstOffset;
}
break;
default:
break;
}
}
bool match(const Tensor::InsideDescribe::Region& srcReg, const Tensor::InsideDescribe::Region& dstReg) {
// dont deal size > 1 && stride <= 0
for (int i = 0; i < 3; i++) {
if (srcReg.size[i] > 1 && (srcReg.src.stride[i] <= 0 || srcReg.dst.stride[i] <= 0)) {
return false;
}
if (dstReg.size[i] > 1 && (dstReg.src.stride[i] <= 0 || dstReg.dst.stride[i] <= 0)) {
return false;
}
}
bool copyValid = true;
// src data isnot full data of dst
if (srcReg.dst.offset > dstReg.src.offset ||
srcReg.dst.stride[1] > srcReg.size[2] ||
srcReg.dst.stride[2] > srcReg.size[1] * srcReg.size[2]) {
copyValid = false;
}
int dstTotalSize = 1, srcTotalSize = 1;
int dstSrcMin = dstReg.src.offset;
int dstSrcMax = dstSrcMin;
int srcDstMin = srcReg.dst.offset;
int srcDstMax = srcDstMin;
for (int i = 0; i < 3; i++) {
srcDstMax += srcReg.dst.stride[i] * (srcReg.size[i] - 1);
dstSrcMax += dstReg.src.stride[i] * (dstReg.size[i] - 1);
if (dstReg.size[i] > 1) {
dstTotalSize *= dstReg.size[i];
}
if (srcReg.size[i] > 1) {
srcTotalSize *= srcReg.size[i];
}
}
// src data is not full data of dst
if (dstTotalSize > srcTotalSize) {
copyValid = false;
}
// Valid range is from srcReg: srcDstMin - srcDstMax, if dst's srcReg exceed, not valid for copy
if (srcDstMin > dstSrcMin || srcDstMax < dstSrcMax) {
copyValid = false;
}
// src copy fuse
if (isCopyRegion(srcReg) && copyValid) {
mStatus = FUSE_SRC_COPY;
return true;
}
#define MNN_3_INT_INIT(x, y) { x[0] = y; x[1] = y; x[2] = y; }
MNN_3_INT_INIT(dstStride, -1)
MNN_3_INT_INIT(srcStride, -1)
expandIdx = -1;
#undef MNN_3_INT_INIT
srcNum = 0, dstNum = 0, sizeNum = 0;
for (int i = 0; i < 3; i++) {
if (srcReg.size[i] > 1) {
srcStride[srcNum] = srcReg.dst.stride[i];
srcDst[srcNum] = srcReg.dst.stride[i];
srcSrc[srcNum] = srcReg.src.stride[i];
srcSize[srcNum] = srcReg.size[i];
srcNum++;
}
if (dstReg.size[i] > 1) {
dstStride[dstNum] = dstReg.src.stride[i];
dstDst[dstNum] = dstReg.dst.stride[i];
dstSrc[dstNum] = dstReg.src.stride[i];
dstSize[dstNum] = dstReg.size[i];
dstNum++;
}
}
sizeNum = dstNum;
#define MNN_3_INT_DIFF(r, x, y, i) if ((x[i] != y[0]) && (x[i] != y[1]) && (x[i] != y[2])) { if (r > 0) { return false; } else { r = x[i]; } }
int srcExtra = -1, dstExtra = -1;
MNN_3_INT_DIFF(srcExtra, srcStride, dstStride, 0)
MNN_3_INT_DIFF(srcExtra, srcStride, dstStride, 1)
MNN_3_INT_DIFF(srcExtra, srcStride, dstStride, 2)
MNN_3_INT_DIFF(dstExtra, dstStride, srcStride, 0)
MNN_3_INT_DIFF(dstExtra, dstStride, srcStride, 1)
MNN_3_INT_DIFF(dstExtra, dstStride, srcStride, 2)
#undef MNN_3_INT_DIFF
if (dstExtra > 0) {
if (!expandStrideSize(srcDst, srcSrc, srcSize, srcNum, dstExtra)) {
return false;
}
}
if (srcExtra > 0) {
if (!expandStrideSize(dstSrc, dstDst, dstSize, dstNum, srcExtra)) {
return false;
}
}
// reorder srcSrc to newSrc by align srcDst and dstSrc
for (int i = 0; i < srcNum; i++) {
int index = -1;
for (int j = 0; j < dstNum; j++) {
if (dstSrc[j] == srcDst[i]) {
index = j;
break;
}
}
if (-1 == index) {
return false;
}
newSrc[index] = srcSrc[i];
newSrcSize[index] = srcSize[i];
}
// set final size and set expandIdx if expand val is 1
newSrcOffset = offsetCompute(srcReg, dstReg.src.offset, srcReg.dst.offset, true) + srcReg.src.offset;
bool valid = _ClipDst(dstSrc, srcReg.dst.offset, dstReg.src.offset, newSrcSize, dstSize, dstNum, dstMax, dstMin);
if (!valid) {
return false;
}
newDstOffset = dstReg.dst.offset;
for (int i=0; i<dstNum; ++i) {
if (dstMax[i] <= dstMin[i]) {
// Set region as empty
dstSize[0] = 0;
dstSize[1] = 0;
dstSize[2] = 0;
break;
}
if (dstMin[i] > 0) {
newDstOffset += dstMin[i] * dstDst[i];
newSrcOffset += dstMin[i] * newSrc[i];
}
}
mStatus = FUSE_REGION_COMPUTE;
return true;
}
private:
int mStatus;
int mSrcOff;
int mDstOff;
// general fuse
int srcDst[3], srcSrc[3], dstSrc[3], dstDst[3], srcSize[3], dstSize[3], newSrc[3], dstStride[3], srcStride[3];
int dstMin[3],dstMax[3];
int newSrcSize[3];
int srcNum, dstNum, sizeNum;
int newSrcOffset;
int newDstOffset;
int expandIdx;
};
TensorUtils::FuseWrap::FuseWrap() {
mStatus = new FuseRegionStatus;
}
TensorUtils::FuseWrap::~ FuseWrap() {
delete mStatus;
}
bool TensorUtils::FuseWrap::match(const Tensor::InsideDescribe::Region& srcReg, const Tensor::InsideDescribe::Region& dstReg) {
return mStatus->match(srcReg, dstReg);
}
#ifdef MNN_DEBUG_BLIT
static std::pair<size_t, size_t> _computeMinSrcDstSize(const Tensor::InsideDescribe::Region& reg) {
size_t srcSize = 1 + reg.src.offset;
size_t dstSize = 1 + reg.dst.offset;
for (int i=0; i<3; ++i) {
if (reg.src.stride[i] > 0) {
srcSize += reg.src.stride[i] * reg.size[i];
}
if (reg.dst.stride[i] > 0) {
dstSize += reg.dst.stride[i] * reg.size[i];
}
}
return std::make_pair(srcSize, dstSize);
}
static void _computeRaw(std::vector<int>& dst, const std::vector<int>& src, const Tensor::InsideDescribe::Region& reg) {
int dstOffset = reg.dst.offset;
int srcOffset = reg.src.offset;
::memset(dst.data(), 0, dst.size() * sizeof(int));
for (int z=0; z<reg.size[0]; ++z) {
int srcZ = srcOffset + z * reg.src.stride[0];
int dstZ = dstOffset + z * reg.dst.stride[0];
for (int y=0; y<reg.size[1]; ++y) {
int srcY = srcZ + y * reg.src.stride[1];
int dstY = dstZ + y * reg.dst.stride[1];
for (int x=0; x<reg.size[2]; ++x) {
int srcX = srcY + x * reg.src.stride[2];
int dstX = dstY + x * reg.dst.stride[2];
dst[dstX] = src[srcX];
}
}
}
}
static std::string _printRegion(const Tensor::InsideDescribe::Region& reg) {
char info[2048];
sprintf(info, "size: %d, %d, %d; src: %d, %d, %d, %d; dst: %d, %d, %d, %d", reg.size[0], reg.size[1], reg.size[2], reg.src.offset, reg.src.stride[0], reg.src.stride[1], reg.src.stride[2], reg.dst.offset, reg.dst.stride[0], reg.dst.stride[1], reg.dst.stride[2]);
info[2047] = 0;
return std::string(info);
}
#endif
void TensorUtils::FuseWrap::apply(const Tensor::InsideDescribe::Region& srcReg, Tensor::InsideDescribe::Region& dstReg) {
#ifdef MNN_DEBUG_BLIT
auto srcSize = _computeMinSrcDstSize(srcReg);
auto dstSize = _computeMinSrcDstSize(dstReg);
auto midSize = ALIMAX(srcSize.second, dstSize.first);
std::vector<int> srcData(srcSize.first);
std::vector<int> midData(midSize);
std::vector<int> dstData(dstSize.second);
std::vector<int> dstDataFuse(dstSize.second);
for (int i=0; i<srcSize.first; ++i) {
srcData[i] = i;
}
_computeRaw(midData, srcData, srcReg);
_computeRaw(dstData, midData, dstReg);
{
auto src = _printRegion(srcReg);
auto dst = _printRegion(dstReg);
MNN_PRINT("Fuse:\n %s \n %s\n To: \n", src.c_str(), dst.c_str());
}
#endif
mStatus->apply(srcReg, dstReg);
#ifdef MNN_DEBUG_BLIT
{
auto dst = _printRegion(dstReg);
MNN_PRINT("%s\n", dst.c_str());
_computeRaw(dstDataFuse, srcData, dstReg);
if (dstDataFuse != dstData) {
FUNC_PRINT(1);
MNN_ASSERT(false);
}
}
#endif
}
void TensorUtils::adjustTensorForCompability(Tensor* newTensor) {
if (newTensor->dimensions() < 4) {
for (int n = newTensor->dimensions(); n < 4; ++n) {
newTensor->setLength(n, 1);
}
}
}
Tensor::DimensionType TensorUtils::getDimType(const Tensor* t) {
auto format = TensorUtils::getDescribe(t)->dimensionFormat;
switch (format) {
case MNN_DATA_FORMAT_NCHW:
return Tensor::CAFFE;
case MNN_DATA_FORMAT_NC4HW4:
return Tensor::CAFFE_C4;
case MNN_DATA_FORMAT_NHWC:
return Tensor::TENSORFLOW;
default:
break;
}
return Tensor::TENSORFLOW;
}
std::vector<float> TensorUtils::getQuantInfo(const Tensor* t) {
float scale = getDescribe(t)->quantAttr ? getDescribe(t)->quantAttr->scale : 0.0f;
float zero = getDescribe(t)->quantAttr ? getDescribe(t)->quantAttr->zero : 0.0f;
float min = getDescribe(t)->quantAttr ? getDescribe(t)->quantAttr->min : -127.0f;
float max = getDescribe(t)->quantAttr ? getDescribe(t)->quantAttr->max : 127.0f;
return {scale, zero, min, max};
}
Tensor::InsideDescribe* TensorUtils::getDescribeOrigin(const Tensor* tensor) {
return tensor->mDescribe;
}
size_t TensorUtils::getRawSize(const Tensor* t) {
size_t len = 1;
int dim = t->dimensions();
for (int i=0; i<dim; ++i) {
len *= (size_t)t->length(i);
}
return len;
}
void TensorUtils::setRasterInputs(Command* cmd) {
auto& regions = TensorUtils::getDescribe(cmd->outputs[0])->regions;
cmd->inputs.resize(regions.size());
for (int i=0; i<regions.size(); ++i) {
#ifdef DEBUG
for (int j=0; j<3; ++j) {
MNN_ASSERT(regions[i].size[j] > 0);
}
#endif
cmd->inputs[i] = regions[i].origin;
auto des = getDescribe(regions[i].origin);
}
}
int TensorUtils::getTensorChannelPack(const Tensor* tensor) {
auto srcDes = TensorUtils::getDescribe(tensor);
return srcDes->support_pack16 ? srcDes->channel_pack_num : 4;
}
void TensorUtils::setTensorChannelPack(const Tensor* tensor, int pack) {
auto srcDes = TensorUtils::getDescribe(tensor);
srcDes->channel_pack_num = srcDes->support_pack16 ? pack : 4;
}
void TensorUtils::setTensorSupportPack(const Tensor* tensor, bool flag) {
auto srcDes = TensorUtils::getDescribe(tensor);
srcDes->support_pack16 = flag;
}
void TensorUtils::setTensorPad(const Tensor* tensor, int left, int right, int bottom, int top) {
auto srcDes = TensorUtils::getDescribe(tensor);
srcDes->mPads.left = std::max(srcDes->mPads.left,left);
srcDes->mPads.right = std::max(srcDes->mPads.right, right);
srcDes->mPads.bottom = std::max(srcDes->mPads.bottom, bottom);
srcDes->mPads.top = std::max(srcDes->mPads.top, top);
}
void TensorUtils::setSharedMem(const Tensor *tensor, Backend::MemObj *mem){
auto srcDes = TensorUtils::getDescribe(tensor);
srcDes->mSharedMem = mem;
}
Backend::MemObj* TensorUtils::getSharedMem(const Tensor* tensor){
auto srcDes = TensorUtils::getDescribe(tensor);
return srcDes->mSharedMem.get();
}
} // namespace MNN