source/math/Vec.hpp (782 lines of code) (raw):

// // Vec.hpp // MNN // // Created by MNN on 2019/04/01. // Copyright © 2018, Alibaba Group Holding Limited // #ifndef Vec_hpp #define Vec_hpp #include "core/Macro.h" #include "core/SimdHeader.h" #include <array> #include <algorithm> // supply std::max and std::min #include <math.h> namespace MNN { namespace Math { template <typename T, int N> struct Vec { using VecType = Vec<T, N>; std::array<T, N> value; VecType operator+(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = value[i] + lr.value[i]; } return dst; } VecType operator-(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = value[i] - lr.value[i]; } return dst; } Vec(std::array<T, N>&& v) { value = std::move(v); } VecType operator==(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { if (value[i] == lr.value[i]) { dst.value[i] = 1; } else { dst.value[i] = 0; } } return dst; } VecType operator<(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { if (value[i] < lr.value[i]) { dst.value[i] = 1; } else { dst.value[i] = 0; } } return dst; } VecType operator<=(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { if (value[i] <= lr.value[i]) { dst.value[i] = 1; } else { dst.value[i] = 0; } } return dst; } VecType operator>(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { if (value[i] > lr.value[i]) { dst.value[i] = 1; } else { dst.value[i] = 0; } } return dst; } VecType operator>=(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { if (value[i] >= lr.value[i]) { dst.value[i] = 1; } else { dst.value[i] = 0; } } return dst; } VecType operator*(const VecType& lr) const { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = value[i] * lr.value[i]; } return dst; } VecType operator*(T lr) const { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = value[i] * lr; } return dst; } VecType operator+=(const VecType& lr) { for (int i = 0; i < N; ++i) { value[i] = value[i] + lr.value[i]; } return *this; } VecType operator-=(const VecType& lr) { for (int i = 0; i < N; ++i) { value[i] = value[i] - lr.value[i]; } return *this; } VecType& operator=(const VecType& lr) { for (int i = 0; i < N; ++i) { value[i] = lr.value[i]; } return *this; } VecType operator-() { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = -value[i]; } return dst; } Vec() { } Vec(const T v) { for (int i = 0; i < N; ++i) { value[i] = v; } } Vec(const VecType& lr) { for (int i = 0; i < N; ++i) { value[i] = lr.value[i]; } } T operator[](size_t i) { return value[i]; } template<typename U> static VecType load(const U* addr) { VecType v; for (int i = 0; i < N; ++i) { v.value[i] = static_cast<T>(addr[i]); } return v; } template<typename U> static VecType broadcast(const U* addr) { VecType v; v.value[0] = static_cast<T>(addr[0]); for (int i = 1; i < N; ++i) { v.value[i] = v.value[0]; } return v; } template<typename U> static void save(U* addr, const VecType& v) { for (int i = 0; i < N; ++i) { addr[i] = static_cast<U>(v.value[i]); } } static VecType max(const VecType& v1, const VecType& v2) { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = std::max(v1.value[i], v2.value[i]); } return dst; } static VecType min(const VecType& v1, const VecType& v2) { VecType dst; for (int i = 0; i < N; ++i) { dst.value[i] = std::min(v1.value[i], v2.value[i]); } return dst; } static VecType fma(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 + v2 * v3; } static VecType fms(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 - v2 * v3; } static inline void transpose4(VecType& vec0, VecType& vec1, VecType& vec2, VecType& vec3) { VecType source[4] = {vec0, vec1, vec2, vec3}; for (int i = 0; i < N; ++i) { vec0.value[i] = source[i % 4].value[i >> 2]; vec1.value[i] = source[i % 4].value[(i + N)>> 2]; vec2.value[i] = source[i % 4].value[(i + 2 * N)>> 2]; vec3.value[i] = source[i % 4].value[(i + 3 * N)>> 2]; } } }; #ifdef MNN_USE_NEON template<> struct Vec<int32_t, 4> { using VecType = Vec<int32_t, 4>; int32x4_t value; Vec() { } Vec(const int32_t v) { value = vdupq_n_s32(v); } Vec(const float v) { value = vdupq_n_s32((int32_t)v); } Vec(const int32x4_t v) { value = v; } Vec(const VecType& lr) { value = lr.value; } Vec(const VecType&& lr) { value = std::move(lr.value); } float operator[](size_t i) { return value[i]; } static VecType load(const float* addr) { VecType v = { (int32x4_t)(vld1q_f32(addr)) }; return v; } static VecType broadcast(const float* addr) { VecType dst = { (int32x4_t)(vld1q_dup_f32(addr)) }; return dst; } static VecType broadcast(const int32_t* addr) { VecType dst = { vld1q_dup_s32(addr) }; return dst; } static VecType load(const int32_t* addr) { VecType v = { vld1q_s32(addr) }; return v; } static void save(float* addr, const VecType& v) { vst1q_f32(addr, (float32x4_t)(v.value)); } static void save(int32_t* addr, const VecType& v) { vst1q_s32(addr, v.value); } static VecType max(const VecType& v1, const VecType& v2) { VecType dst = { vmaxq_s32(v1.value, v2.value) }; return dst; } static VecType min(const VecType& v1, const VecType& v2) { VecType dst = { vminq_s32(v1.value, v2.value) }; return dst; } static VecType fma(const VecType& v1, const VecType& v2, const VecType& v3) { VecType dst = {vmlaq_s32(v1.value, v2.value, v3.value)}; return dst; } static VecType fms(const VecType& v1, const VecType& v2, const VecType& v3) { VecType dst = {vmlsq_s32(v1.value, v2.value, v3.value)}; return dst; } static inline void transpose4(VecType& vec0, VecType& vec1, VecType& vec2, VecType& vec3) { #ifdef __aarch64__ auto m0 = vtrn1q_s32(vec0.value, vec1.value); auto m1 = vtrn2q_s32(vec0.value, vec1.value); auto m2 = vtrn1q_s32(vec2.value, vec3.value); auto m3 = vtrn2q_s32(vec2.value, vec3.value); vec0.value = (int32x4_t)(vtrn1q_s64((int64x2_t)(m0), (int64x2_t)(m2))); vec1.value = (int32x4_t)(vtrn1q_s64((int64x2_t)(m1), (int64x2_t)(m3))); vec2.value = (int32x4_t)(vtrn2q_s64((int64x2_t)(m0), (int64x2_t)(m2))); vec3.value = (int32x4_t)(vtrn2q_s64((int64x2_t)(m1), (int64x2_t)(m3))); #else auto m0m1 = vtrnq_s32(vec0.value, vec1.value); auto m2m3 = vtrnq_s32(vec2.value, vec3.value); vec0.value = m0m1.val[0]; vec1.value = m0m1.val[1]; vec2.value = m2m3.val[0]; vec3.value = m2m3.val[1]; vec0.value = (int32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)m2m3.val[0], 0), (int64x2_t)vec0.value, 1)); vec1.value = (int32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)m2m3.val[1], 0), (int64x2_t)vec1.value, 1)); vec2.value = (int32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)m0m1.val[0], 1), (int64x2_t)vec2.value, 0)); vec3.value = (int32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)m0m1.val[1], 1), (int64x2_t)vec3.value, 0)); #endif } VecType operator+(const VecType& lr) const { VecType dst = { vaddq_s32(value, lr.value) }; return dst; } VecType operator-(const VecType& lr) const { VecType dst = { vsubq_s32(value, lr.value) }; return dst; } VecType operator+=(const VecType& lr) { value = vaddq_s32(value, lr.value); return *this; } VecType operator-=(const VecType& lr) { value = vsubq_s32(value, lr.value); return *this; } VecType operator*(int32_t lr) const { VecType dst = { vmulq_n_s32(value, lr) }; return dst; } VecType operator*(float lr) const { VecType dst = { vmulq_n_s32(value, (int32_t)lr) }; return dst; } VecType operator*(const VecType& lr) const { VecType dst = { vmulq_s32(value, lr.value) }; return dst; } VecType& operator=(const VecType& lr) { value = lr.value; return *this; } VecType& operator=(const VecType&& lr) { value = std::move(lr.value); return *this; } VecType operator-() { VecType dst = { vnegq_s32(value) }; return dst; } VecType operator<(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcltq_s32(value, lr.value); VecType dst = { vbslq_s32(res, one, zero) }; return dst; } VecType operator>(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcgtq_s32(value, lr.value); VecType dst = { vbslq_s32(res, one, zero) }; return dst; } VecType operator<=(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcleq_s32(value, lr.value); VecType dst = { vbslq_s32(res, one, zero) }; return dst; } VecType operator>=(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcgeq_s32(value, lr.value); VecType dst = { vbslq_s32(res, one, zero) }; return dst; } VecType operator==(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vceqq_s32(value, lr.value); VecType dst = { vbslq_s32(res, one, zero) }; return dst; } }; template<> struct Vec<float, 4> { using VecType = Vec<float, 4>; using VecTypeInt32 = Vec<int32_t, 4>; float32x4_t value; Vec() { } Vec(const float v) { value = vdupq_n_f32(v); } Vec(const float32x4_t v) { value = v; } Vec(const VecType& lr) { value = lr.value; } Vec(const VecType&& lr) { value = std::move(lr.value); } float operator[](size_t i) { return value[i]; } static VecType load(const float* addr) { VecType v = { vld1q_f32(addr) }; return v; } static VecType broadcast(const float* addr) { VecType dst = { vld1q_dup_f32(addr) }; return dst; } static VecType load(const int32_t* addr) { VecType v = { vcvtq_f32_s32(vld1q_s32(addr)) }; return v; } static void save(float* addr, const VecType& v) { vst1q_f32(addr, v.value); } static void save(float* addr, const VecTypeInt32& v) { vst1q_f32(addr, (float32x4_t)(v.value)); } static void save(int32_t* addr, const VecType& v) { vst1q_s32(addr, (int32x4_t)(v.value)); } static VecType max(const VecType& v1, const VecType& v2) { VecType dst = { vmaxq_f32(v1.value, v2.value) }; return dst; } static VecType min(const VecType& v1, const VecType& v2) { VecType dst = { vminq_f32(v1.value, v2.value) }; return dst; } static VecType fma(const VecType& v1, const VecType& v2, const VecType& v3) { VecType dst = {vmlaq_f32(v1.value, v2.value, v3.value)}; return dst; } static VecType fms(const VecType& v1, const VecType& v2, const VecType& v3) { VecType dst = {vmlsq_f32(v1.value, v2.value, v3.value)}; return dst; } static inline void transpose4(VecType& vec0, VecType& vec1, VecType& vec2, VecType& vec3) { #ifdef __aarch64__ auto m0 = vtrn1q_s32((int32x4_t)(vec0.value), (int32x4_t)(vec1.value)); auto m1 = vtrn2q_s32((int32x4_t)(vec0.value), (int32x4_t)(vec1.value)); auto m2 = vtrn1q_s32((int32x4_t)(vec2.value), (int32x4_t)(vec3.value)); auto m3 = vtrn2q_s32((int32x4_t)(vec2.value), (int32x4_t)(vec3.value)); vec0.value = (float32x4_t)(vtrn1q_s64((int64x2_t)(m0), (int64x2_t)(m2))); vec1.value = (float32x4_t)(vtrn1q_s64((int64x2_t)(m1), (int64x2_t)(m3))); vec2.value = (float32x4_t)(vtrn2q_s64((int64x2_t)(m0), (int64x2_t)(m2))); vec3.value = (float32x4_t)(vtrn2q_s64((int64x2_t)(m1), (int64x2_t)(m3))); #else auto m0m1 = vtrnq_s32((int32x4_t)(vec0.value), (int32x4_t)(vec1.value)); auto m2m3 = vtrnq_s32((int32x4_t)(vec2.value), (int32x4_t)(vec3.value)); vec0.value = (float32x4_t)(m0m1.val[0]); vec1.value = (float32x4_t)(m0m1.val[1]); vec2.value = (float32x4_t)(m2m3.val[0]); vec3.value = (float32x4_t)(m2m3.val[1]); vec0.value = (float32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)(m2m3.val[0]), 0), (int64x2_t)(vec0.value), 1)); vec1.value = (float32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)(m2m3.val[1]), 0), (int64x2_t)(vec1.value), 1)); vec2.value = (float32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)(m0m1.val[0]), 1), (int64x2_t)(vec2.value), 0)); vec3.value = (float32x4_t)(vsetq_lane_s64(vgetq_lane_s64((int64x2_t)(m0m1.val[1]), 1), (int64x2_t)(vec3.value), 0)); /* generated arm32 assembly code is almost the same as: vtrn.32 d0, d2 vtrn.32 d1, d3 vtrn.32 d4, d6 vtrn.32 d5, d7 vswp d1, d4 vswp d3, d6 */ #endif } VecType operator+(const VecType& lr) const { VecType dst = { vaddq_f32(value, lr.value) }; return dst; } VecType operator-(const VecType& lr) const { VecType dst = { vsubq_f32(value, lr.value) }; return dst; } VecType operator+=(const VecType& lr) { value = vaddq_f32(value, lr.value); return *this; } VecType operator-=(const VecType& lr) { value = vsubq_f32(value, lr.value); return *this; } VecType operator*(float lr) const { VecType dst = { vmulq_n_f32(value, lr) }; return dst; } VecType operator*(const VecType& lr) const { VecType dst = { vmulq_f32(value, lr.value) }; return dst; } VecType& operator=(const VecType& lr) { value = lr.value; return *this; } VecType& operator=(const VecType&& lr) { value = std::move(lr.value); return *this; } VecType operator-() { VecType dst = { vnegq_f32(value) }; return dst; } VecType operator<(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcltq_f32(value, lr.value); VecType dst = { (float32x4_t)(vbslq_s32(res, one, zero)) }; return dst; } VecType operator>(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcgtq_f32(value, lr.value); VecType dst = { (float32x4_t)(vbslq_s32(res, one, zero)) }; return dst; } VecType operator<=(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcleq_f32(value, lr.value); VecType dst = { (float32x4_t)(vbslq_s32(res, one, zero)) }; return dst; } VecType operator>=(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vcgeq_f32(value, lr.value); VecType dst = { (float32x4_t)(vbslq_s32(res, one, zero)) }; return dst; } VecType operator==(const VecType& lr) const { int32x4_t one = vdupq_n_s32(1); int32x4_t zero = vdupq_n_s32(0); uint32x4_t res = vceqq_f32(value, lr.value); VecType dst = { (float32x4_t)(vbslq_s32(res, one, zero)) }; return dst; } }; #elif defined(MNN_USE_SSE) template<> struct Vec<int32_t, 4> { using VecType = Vec<int32_t, 4>; using VecTypeArray = std::array<VecType, 4>; __m128i value; VecType operator+(const VecType& lr) const { VecType dst = { _mm_add_epi32(value, lr.value) }; return dst; } VecType operator-(const VecType& lr) const { VecType dst = { _mm_sub_epi32(value, lr.value) }; return dst; } VecType operator+=(const VecType& lr) { value = _mm_add_epi32(value, lr.value); return *this; } VecType operator-=(const VecType& lr) { value = _mm_sub_epi32(value, lr.value); return *this; } VecType operator*(const VecType& lr) const { VecType dst = {_mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(value), _mm_cvtepi32_ps(lr.value)))}; return dst; } VecType& operator=(const VecType& lr) { value = lr.value; return *this; } VecType operator==(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmpeq_epi32(value, lr.value); VecType dst = { _mm_and_si128(one, mask) }; return dst; } VecType operator<(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmplt_epi32(value, lr.value); VecType dst = { _mm_and_si128(one, mask) }; return dst; } VecType operator<=(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmpgt_epi32(value, lr.value); VecType dst = { _mm_andnot_si128(mask, one) }; return dst; } VecType operator>(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmpgt_epi32(value, lr.value); VecType dst = { _mm_and_si128(one, mask) }; return dst; } VecType operator>=(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmplt_epi32(value, lr.value); VecType dst = { _mm_andnot_si128(mask, one) }; return dst; } VecType operator-() { VecType dst; #if defined(_MSC_VER) dst.value = _mm_cvtps_epi32(_mm_xor_ps(_mm_cvtepi32_ps(value), _mm_set1_ps(-0.f))); // Using unary operation to SSE vec is GCC extension. We can not do this directly in MSVC. #else dst.value = -value; #endif return dst; } Vec() { } Vec(const float v) { int u = static_cast<int32_t>(v); value = _mm_set_epi32(u, u, u, u); } Vec(const int32_t v) { value = _mm_set_epi32(v, v, v, v); } Vec(__m128i&& v) { value = v; } Vec(__m128&& v) { value = _mm_castps_si128(v); } Vec(const VecType& lr) { value = lr.value; } float operator[](size_t i) { #if defined(_MSC_VER) // X64 native only mandatory support SSE and SSE2 extension, and we can not find intrinsic function to extract element directly by index in SSE and SSE2 extension. int32_t temp[4]; _mm_storeu_si128((__m128i*)temp, value); return temp[i]; #else return value[i]; #endif } static VecType load(const int32_t* addr) { VecType v = {_mm_loadu_si128((__m128i const*)(addr))}; return v; } static VecType broadcast(const int32_t* addr) { int32_t arr[4] = {*addr, 0, 0, 0}; VecType dst = { _mm_loadu_si128((__m128i const*)(arr)) }; return dst; } static void save(int32_t* addr, const VecType& v) { _mm_storeu_si128((__m128i*)addr, v.value); } static VecType max(const VecType& v1, const VecType& v2) { VecType dst = {_mm_cvtps_epi32(_mm_max_ps(_mm_cvtepi32_ps(v1.value), _mm_cvtepi32_ps(v2.value)))}; return dst; } static VecType min(const VecType& v1, const VecType& v2) { VecType dst = {_mm_cvtps_epi32(_mm_min_ps(_mm_cvtepi32_ps(v1.value), _mm_cvtepi32_ps(v2.value)))}; return dst; } static VecType fma(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 + v2 * v3; // TODO: use fma instruction } static VecType fms(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 - v2 * v3; // TODO: use fma instruction } static inline void transpose4(VecType& vec0, VecType& vec1, VecType& vec2, VecType& vec3) { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps(_mm_castsi128_ps(vec0.value), _mm_castsi128_ps(vec1.value)); tmp2 = _mm_unpacklo_ps(_mm_castsi128_ps(vec2.value), _mm_castsi128_ps(vec3.value)); tmp1 = _mm_unpackhi_ps(_mm_castsi128_ps(vec0.value), _mm_castsi128_ps(vec1.value)); tmp3 = _mm_unpackhi_ps(_mm_castsi128_ps(vec2.value), _mm_castsi128_ps(vec3.value)); vec0.value = _mm_castps_si128(_mm_movelh_ps(tmp0, tmp2)); vec1.value = _mm_castps_si128(_mm_movehl_ps(tmp2, tmp0)); vec2.value = _mm_castps_si128(_mm_movelh_ps(tmp1, tmp3)); vec3.value = _mm_castps_si128(_mm_movehl_ps(tmp3, tmp1)); } }; template<> struct Vec<float, 4> { using VecType = Vec<float, 4>; using VecTypeInt32 = Vec<int32_t, 4>; using VecTypeArray = std::array<VecType, 4>; __m128 value; VecType operator+(const VecType& lr) const { VecType dst = { _mm_add_ps(value, lr.value) }; return dst; } VecType operator-(const VecType& lr) const { VecType dst = { _mm_sub_ps(value, lr.value) }; return dst; } VecType operator+=(const VecType& lr) { value = _mm_add_ps(value, lr.value); return *this; } VecType operator-=(const VecType& lr) { value = _mm_sub_ps(value, lr.value); return *this; } VecType operator*(const VecType& lr) const { VecType dst = { _mm_mul_ps(value, lr.value) }; return dst; } VecType operator*(float lr) const { VecType dst = { _mm_mul_ps(value, _mm_set1_ps(lr)) }; return dst; } VecType& operator=(const VecType& lr) { value = lr.value; return *this; } VecType operator-() { VecType dst; #if defined(_MSC_VER) dst.value = _mm_xor_ps(value, _mm_set1_ps(-0.f)); // Using unary operation to SSE vec is GCC extension. We can not do this directly in MSVC. #else dst.value = -value; #endif return dst; } VecType operator==(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmpeq_epi32(_mm_castps_si128(value), _mm_castps_si128(lr.value)); VecType dst = { _mm_castsi128_ps(_mm_and_si128(one, mask)) }; return dst; } VecType operator<(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128i mask = _mm_cmplt_epi32(_mm_castps_si128(value), _mm_castps_si128(lr.value)); VecType dst = { _mm_castsi128_ps(_mm_and_si128(one, mask)) }; return dst; } VecType operator<=(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128 mask = _mm_cmple_ps(value, lr.value); VecType dst = { _mm_castsi128_ps(_mm_and_si128(one, _mm_castps_si128(mask))) }; return dst; } VecType operator>(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128 mask = _mm_cmpgt_ps(value, lr.value); VecType dst = { _mm_castsi128_ps(_mm_and_si128(one, _mm_castps_si128(mask))) }; return dst; } VecType operator>=(const VecType& lr) const { __m128i one = _mm_set1_epi32(1); __m128 mask = _mm_cmpge_ps(value, lr.value); VecType dst = { _mm_castsi128_ps(_mm_and_si128(one, _mm_castps_si128(mask))) }; return dst; } Vec() { } Vec(const float v) { value = _mm_set1_ps(v); } Vec(__m128&& v) { value = v; } Vec(const VecType& lr) { value = lr.value; } float operator[](size_t i) { #if defined(_MSC_VER) // X64 native only mandatory support SSE and SSE2 extension, and we can not find intrinsic function to extract element directly by index in SSE and SSE2 extension. float temp[4]; _mm_storeu_ps(temp, value); return temp[i]; #else return value[i]; #endif } static VecType load(const float* addr) { VecType v = { _mm_loadu_ps(addr) }; return v; } static VecType broadcast(const float* addr) { VecType dst = { _mm_load_ss(addr) }; return dst; } static void save(float* addr, const VecType& v) { _mm_storeu_ps(addr, v.value); } static void save(float* addr, const VecTypeInt32& v) { _mm_storeu_ps(addr, _mm_castsi128_ps(v.value)); } static void save(int32_t* addr, const VecType& v) { _mm_storeu_si128((__m128i*)addr, _mm_castps_si128(v.value)); } static VecType max(const VecType& v1, const VecType& v2) { VecType dst = { _mm_max_ps(v1.value, v2.value) }; return dst; } static VecType min(const VecType& v1, const VecType& v2) { VecType dst = { _mm_min_ps(v1.value, v2.value) }; return dst; } static VecType fma(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 + v2 * v3; // TODO: use fma instruction } static VecType fms(const VecType& v1, const VecType& v2, const VecType& v3) { return v1 - v2 * v3; // TODO: use fma instruction } static inline void transpose4(VecType& vec0, VecType& vec1, VecType& vec2, VecType& vec3) { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((vec0.value), (vec1.value)); tmp2 = _mm_unpacklo_ps((vec2.value), (vec3.value)); tmp1 = _mm_unpackhi_ps((vec0.value), (vec1.value)); tmp3 = _mm_unpackhi_ps((vec2.value), (vec3.value)); vec0.value = _mm_movelh_ps(tmp0, tmp2); vec1.value = _mm_movehl_ps(tmp2, tmp0); vec2.value = _mm_movelh_ps(tmp1, tmp3); vec3.value = _mm_movehl_ps(tmp3, tmp1); } }; #endif } // namespace Math } // namespace MNN #endif /* Vec_hpp */