source/shape/ShapeConvolution.cpp (219 lines of code) (raw):
//
// ShapeConvolution.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "shape/SizeComputer.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
class ConvolutionSizeComputer : public SizeComputer {
public:
static const Convolution2DCommon* loadCommon(const Op* op) {
const Convolution2DCommon* layer = nullptr;
if (op->main_type() == OpParameter_Convolution2D) {
layer = op->main_as_Convolution2D()->common();
} else {
MNN_ASSERT(op->main_type() == OpParameter_TfQuantizedConv2D);
layer = op->main_as_TfQuantizedConv2D()->common();
}
return layer;
}
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(inputs.size() >= 1);
MNN_ASSERT(1 == outputs.size());
const Convolution2DCommon* layer = loadCommon(op);
int kX = layer->kernelX();
int kY = layer->kernelY();
auto outputCount = layer->outputCount();
if (inputs.size() > 1 && outputCount == 0) {
// From TF's multi input convolution
outputCount = inputs[1]->length(0);
kX = inputs[1]->length(3);
kY = inputs[1]->length(2);
}
int kernel_width = layer->dilateX() * (kX - 1) + 1;
int kernel_height = layer->dilateY() * (kY - 1) + 1;
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (input->dimensions() <= 1) {
// Convolution is not valid for dimension <= 1
return false;
}
auto inputCount = layer->inputCount();
bool depthwiseMatch =
inputCount == layer->outputCount() &&
inputCount == layer->group() &&
inputCount == input->channel();
int commonChannelMatch =
inputCount == inputs[0]->channel() || // real relationship in express
(inputCount * layer->group() == input->channel()); // standard definition of group convolution
bool valid = inputCount == 0 || depthwiseMatch || commonChannelMatch;
// For Tensorflow Group Convolution, the inputCount is the size of filter's input count
if (inputs.size() == 1 && !valid && OpType_Convolution == op->type()) {
input->printShape();
MNN_ERROR(
"Error for compute convolution shape, inputCount:%d, outputCount:%d, KH:%d, KW:%d, group:%d\ninputChannel: %d, batch:%d, width:%d, height:%d. "
"Input data channel may be mismatch with filter channel count\n",
layer->inputCount(), outputCount, kY, kX, layer->group(),
input->channel(), input->batch(), input->width(), input->height());
return false;
}
if (layer->padMode() == PadMode_SAME) {
// Tensorflow padding mode SAME
output_width = ceil((float)input->width() / (float)layer->strideX());
output_height = ceil((float)input->height() / (float)layer->strideY());
} else if (layer->padMode() == PadMode_VALID) {
// Tensorflow padding mode VALID
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
} else {
// Pad_Caffe means User setted padding
if (nullptr != layer->pads()) {
MNN_ASSERT(layer->pads()->size() >= 4);
int input_width = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];
int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];
output_width = input_width < kernel_width ? 0 : (input_width - kernel_width) / layer->strideX() + 1;
output_height = input_height < kernel_height ? 0 : (input_height - kernel_height) / layer->strideY() + 1;
} else {
int input_width = input->width() + layer->padX() * 2;
int input_height = input->height() + layer->padY() * 2;
output_width = (input_width - kernel_width) / layer->strideX() + 1;
output_height = (input_height - kernel_height) / layer->strideY() + 1;
}
}
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
auto format = TensorUtils::getDescribe(input)->dimensionFormat;
outputBuffer.type = input->getType();
if (op->main_as_Convolution2D() && op->main_as_Convolution2D()->symmetricQuan() && op->main_as_Convolution2D()->symmetricQuan()->outputDataType() != DataType_DT_INT8) {
auto type = op->main_as_Convolution2D()->symmetricQuan()->outputDataType();
outputs[0]->setType(type);
}
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
if (MNN_DATA_FORMAT_NHWC == format) {
outputBuffer.dim[3].extent = outputCount;
outputBuffer.dim[1].extent = output_height;
outputBuffer.dim[2].extent = output_width;
} else {
outputBuffer.dim[1].extent = outputCount;
outputBuffer.dim[2].extent = output_height;
outputBuffer.dim[3].extent = output_width;
}
// MNN_PRINT("outputs: %d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
const Convolution2DCommon* layer = loadCommon(op);
auto kw = layer->kernelX();
auto kh = layer->kernelY();
auto group = layer->group();
auto ic = inputs[0]->channel();
auto oc = outputs[0]->channel();
auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
if (op->type() == OpType_QuantizedDepthwiseConv2D) {
group = ic;
}
if (layer->inputCount() != ic && layer->inputCount() > 0) {
group = ic / layer->inputCount();
}
auto flops = (float)oSize * kw * kh * (ic * oc / (group == 0 ? 1 : group)) / FLOPS_M;
return flops;
}
};
class Dilation2DSizeComputer : public ConvolutionSizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
return ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto output = outputs[0];
auto layer = op->main_as_Convolution2D()->common();
auto oSize = output->batch() * output->height() * output->width() * output->channel();
auto flops = (float)oSize * layer->kernelY() * layer->kernelX() / FLOPS_M;
return flops;
}
};
class Conv2DBackpropFilterSizeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto common = op->main_as_Convolution2D()->common();
auto kernel = outputs[0];
kernel->buffer().dimensions = 4;
kernel->buffer().type = halide_type_of<float>();
TensorUtils::getDescribe(kernel)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
kernel->setLength(0, inputs[1]->channel());
kernel->setLength(1, inputs[0]->channel() / common->group());
kernel->setLength(2, common->kernelY());
kernel->setLength(3, common->kernelX());
return true;
}
};
class Im2ColSizeComputer : public ConvolutionSizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
// get kh, kw
const Convolution2DCommon* layer = loadCommon(op);
auto kh = layer->kernelY();
auto kw = layer->kernelX();
// get oh, ow
ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
auto output = outputs[0];
int oh = output->height();
int ow = output->width();
// [n, ic, ih, iw] -> [ic*kh*kw, n*oh*ow]
auto input = inputs[0];
int n = input->batch();
int ic = input->channel();
int ih = input->height();
int iw = input->width();
output->buffer().dimensions = 2;
output->setLength(0, ic * kh * kw);
output->setLength(1, n * oh * ow);
return true;
}
};
class Col2ImSizeComputer : public ConvolutionSizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
const Convolution2DCommon* layer = loadCommon(op);
auto kh = layer->kernelY();
auto kw = layer->kernelX();
auto input = inputs[0];
auto output = outputs[0];
auto outputShape = inputs[1];
auto oDim = outputShape->host<int32_t>();
int oh = 1, ow = 1;
if (outputShape->elementSize() == 2) {
oh = oDim[0];
ow = oDim[1];
} else {
MNN_ASSERT(false);
}
auto iDim = input->shape();
int batch = 1;
int colSize = iDim[0];
if (iDim.size() == 3) {
batch = iDim[0];
colSize = iDim[1];
} else if (iDim.size() == 2) {
colSize = iDim[0];
} else {
MNN_ASSERT(false);
}
output->buffer().dimensions = 4;
output->setLength(0, batch);
output->setLength(1, colSize / (kh * kw));
output->setLength(2, oh);
output->setLength(3, ow);
return true;
}
};
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution);
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise);
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_TfQuantizedConv2D);
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_QuantizedDepthwiseConv2D);
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvInt8);
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_DepthwiseConvInt8);
REGISTER_SHAPE(Dilation2DSizeComputer, OpType_Dilation2D);
REGISTER_SHAPE(Conv2DBackpropFilterSizeComputer, OpType_Conv2DBackPropFilter);
REGISTER_SHAPE(Im2ColSizeComputer, OpType_Im2Col);
REGISTER_SHAPE_INPUTS(Col2ImSizeComputer, OpType_Col2Im, {1});
} // namespace MNN