src/open-r1-multimodal/src/open_r1/trainer/grpo_trainer.py [308:322]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            callbacks=callbacks,
            optimizers=optimizers,
        )

        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/open-r1-multimodal/src/open_r1/trainer/vllm_grpo_trainer.py [324:337]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            callbacks=callbacks,
            optimizers=optimizers,
        )
        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



