def main()

in src/open-r1-multimodal/src/open_r1/sft.py [0:0]


def main(script_args, training_args, model_args):
    # Set seed for reproducibility
    set_seed(training_args.seed)

    ###############
    # Setup logging
    ###############
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process a small summary
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Model parameters {model_args}")
    logger.info(f"Script parameters {script_args}")
    logger.info(f"Data parameters {training_args}")

    # Check for last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
    if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
        logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")

    ################
    # Load datasets
    ################

    dataset = LazySupervisedDataset(script_args.dataset_name, script_args)

    ################
    # Load tokenizer
    ################
    global processor
    if "vl" in model_args.model_name_or_path.lower():
        processor = AutoProcessor.from_pretrained(
            model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
        )
        logger.info("Using AutoProcessor for vision-language model.")
    else:
        processor = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True
        )
        logger.info("Using AutoTokenizer for text-only model.")
    if hasattr(processor, "pad_token") and processor.pad_token is None:
        processor.pad_token = processor.eos_token
    elif hasattr(processor.tokenizer, "pad_token") and processor.tokenizer.pad_token is None:
        processor.tokenizer.pad_token = processor.tokenizer.eos_token
    
    ###################
    # Model init kwargs
    ###################
    logger.info("*** Initializing model kwargs ***")
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        trust_remote_code=model_args.trust_remote_code,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    # training_args.model_init_kwargs = model_kwargs
    from transformers import Qwen2VLForConditionalGeneration, Qwen2_5_VLForConditionalGeneration
    if "Qwen2-VL" in model_args.model_name_or_path:
        model = Qwen2VLForConditionalGeneration.from_pretrained(
            model_args.model_name_or_path, **model_kwargs
        )
    elif "Qwen2.5-VL" in model_args.model_name_or_path:
        model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
            model_args.model_name_or_path, **model_kwargs
        )
    else:
        raise ValueError(f"Unsupported model: {model_args.model_name_or_path}")
    ############################
    # Initialize the SFT Trainer
    ############################
    training_args.dataset_kwargs = {
        "skip_prepare_dataset": True,
    }
    training_args.remove_unused_columns = False
    trainer = SFTTrainer(
        model=model,
        args=training_args,
        train_dataset=dataset,
        eval_dataset=None,
        processing_class=processor.tokenizer,
        data_collator=collate_fn,
        peft_config=get_peft_config(model_args),
        callbacks=get_callbacks(training_args, model_args),
    )

    ###############
    # Training loop
    ###############
    logger.info("*** Train ***")
    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint
    train_result = trainer.train(resume_from_checkpoint=checkpoint)
    metrics = train_result.metrics
    metrics["train_samples"] = len(dataset[script_args.dataset_train_split])
    trainer.log_metrics("train", metrics)
    trainer.save_metrics("train", metrics)
    trainer.save_state()

    ##################################
    # Save model and create model card
    ##################################
    logger.info("*** Save model ***")
    trainer.save_model(training_args.output_dir)
    logger.info(f"Model saved to {training_args.output_dir}")

    # Save everything else on main process
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": list(script_args.dataset_name),
        "dataset_tags": list(script_args.dataset_name),
        "tags": ["open-r1"],
    }
    if trainer.accelerator.is_main_process:
        trainer.create_model_card(**kwargs)
        # Restore k,v cache for fast inference
        trainer.model.config.use_cache = True
        trainer.model.config.save_pretrained(training_args.output_dir)
    #############
    # push to hub
    #############

    if training_args.push_to_hub:
        logger.info("Pushing to hub...")
        trainer.push_to_hub(**kwargs)